Frequently Asked Questions
    Metal Cutting 
    in General
  • What is the correct definition: cutting tool or metal cutting tool?
    Historically, metals were the main materials to produce machined parts. Therefore, cutting tools were intended primarily for machining metals, and this determined their name. Today the term "metal cutting tool" is rare enough, while simply "cutting tool" is much more common; and these two definitions have become synonyms.
  • What is "primary motion" and "feed motion"?
    In machining, the primary motion is a rectilinear or rotational motion of a cutting tool or a workpiece that provides the tool advance toward the workpiece to ensure chip removal. In a machining process, the primary motion features the maximum speed and most of the energy, which is required for machining, when compared to all other motions. The primary motion in turning, for example, is the rotation of a workpiece, while in milling, the primary motion is the rotation of a mill.

    The feed motion is a rectilinear or rotational motion of a cutting tool, which adds the primary motion to complete cutting action. This motion features significantly less speed when compared to the speed of a primary motion.
  • What is the difference between macro- and micro geometry of a cutting edge?
    Macro geometry of a cutting edge relates to the key elements of a tool cutting wedge that determine the tool cutting capabilities such as the shape of the rake face, the rake angles, the clearance angles etc. Micro geometry is a microscopic-scale condition of the edge, which is known also as the edge preparation. Depending on the edge condition, the edge can be sharp, rounded (honed), chamfered edge or combined comprising combinations of rounding and chamfering.
  • What is the difference between specific cutting forces that are designated as kc and kc1?
    "kc" relates to actual specific cutting force - the force that is needed to remove a material chip area of 1 mm2 (.0016 in2), which has actual average chip thickness maintained in a machining process.
    "kc1" is commonly used for designating the specific cutting force to remove a material chip area of 1 mm2 (.0016 in2) with 1 mm (.004 in) thickness.
    However, in some technical data sources, the actual specific cutting force may be designated by "kc1", and specific cutting force to remove a material chip area of 1 mm2 (.0016 in2) with 1 mm (.004 in) thickness by "kc1.1". Number "1" that follows index "c" relates to 1 mm2 chip area, and addition "1.1" highlights "1 mm2 chip area with 1 mm thickness".
  • How are cutting tools classified?
    There are distinctive features to classify cutting tools.
    • The machining process, for which a tool is intended (turning tools, milling tools, drilling tools etc.)
    • Primary motion (rotating, non-rotating)
    • The number of a tool cutting edges (single-point tools that have only one cutting edge, and multi-point tools with more than one cutting edge)
    • The tool design concept (solid or one-piece, and assembled)
    • The tool mounting method (bore-type tools, shank-type tools)
    • Adjustment capabilities (adjustable, non-adjustable)
  • Which tool is considered to be standard?
    The definition "standard tool" has a certain duality. On the one hand, it may mean that a tool meets the requirements of a national (international) standard. On the other hand, cutting tool manufacturers use this definition to specify their in-stock products of standard delivery.
  • What is the correct term, "brazed tools" or "soldered tools"?
    Principally, both brazing and soldering relate to the same process: joining various materials together using a molten metal (filler) between these parts, while the filler has a lower melting point than the joined materials. The main difference between brazing and soldering is the process operating temperature, which is less for soldering, and, accordingly, the type of filler. A brazed joint usually features higher strength when compared with a soldered connection. With relation to cutting tools, using the term "brazed" is more correct.
  • What is "oscillation cutting"?
    Oscillation cutting is a machining technique that combines the primary motion with the additional oscillatory motion of a cutting tool relative to a machined workpiece to break chips.
  • What is the concept of high-efficiency machining?
    High-efficiency machining (HEM) is a milling method much like high-speed machining (HSM), which utilizes a large axial depth of cut and a small radial depth of cut in combination with high rotational velocity (spindle speed) of the tool. However, the radial depth of cut varies depending on the angle of tool engagement to facilitate constant chip thickness per cutting edge during tool rotation. This method assures efficient use tool use for the uniform development of wear that covers a large section of the tool's cutting edge. HEM is often referred to as "dynamic milling" and features productive rough milling operations. HEM demands appropriate capabilities of CAM and CNC to generate the required toolpath.
  • What is the reference system of planes?
    The reference system of planes is a rectangular coordinate system with the origin in a selected point of the tool's cutting edge. This system is used to specify the angles that determine the cutting geometry of a tool.
  • How is the reference system for planes selected?
    The reference systems for planes are defined in the following manner: - the tool-in hand system, which specifies a tool cutting geometry for design, manufacturing, and measuring process of the tool. - the tool-in-use system is used to specify the cutting geometry of the tool in use. - the machine system is intended for checking the geometry when the tool is mounted in a machine. The tool-in-hand system relates to the element of a tool that is chosen as a base (datum). The tool-in-use system is aligned with the resultant cutting motion in a machining operation. The machining system uses the direction of primary motion as reference.
  • What are the main mechanisms of tool wear?
    The main mechanisms of tool wear are as follows: - Abrasive wear, is due to the heterogeneous metallurgical structure of the workpiece material, that features particles of different hardness. This causes the tool to be exposed to impact like abrasive machining and the removal of cutting material from the tool. - Mechanical wear is caused due to excessive mechanical load that can lead to a damaged cutting edge. - Adhesive wear occurs at specific values of cutting speeds and temperature in the cutting zone, which results in tool areas being welded with the particles of the removed material. This forms a foreign reinforced material that becomes the cutting edge and changes the cutting geometry. - Oxidation wear happens when the oxygen in the air reacts with the upper layer of the cutting material under high temperature in the cutting zone. - Diffusion wear occurs because of the tool's joint diffusion of material particles, the machined workpiece, and the formed chips. This changes the composition of the cutting material and diminishes its cutting capabilities.
  • What is a wedge angle?
    In cutting tool geometry, the wedge angle refers to the angle between the face and the flank of a cutting tool. Depending on the plane in which this angle is measured, it can be called a normal wedge angle or a back wedge angle.
  • What are tool angles and working angles, and what is the difference between them?
    Tool angles and working angles refer to the angles that define the position of the cutting edge, face, and flank of a cutting tool. These angles include the cutting-edge angle, rake angle, clearance angle, and so on. The difference between tool angles and working angles can be understood as follows: Tool angles determine the position of these cutting tool elements when considering the tool as a separate object. Therefore, tool angles are measured in the tool-in-hand reference system of planes. On the other hand, working angles determine the position of these elements during the cutting action of the tool, and they are measured in the tool-in-use reference system.
  • What is a cutting geometry?
    Cutting geometry, also known as "tool geometry", is the shape of the cutting part of a tool that enables effective cutting action. The cutting geometry can be broken down into macro- and micro- geometries. The macro cutting geometry refers to the shapes of the tool's face and flank while micro cutting geometry relates to the minute details or the fine structure of the tool's cutting edge.
  • What is the tool's wear land?
    The tool's wear land is an area on the tool's flank that experiences abrasion due to the friction caused by hard inclusions of the workpiece material during the cutting process. The extent of this wear is quantified by measuring the width of the wear land, commonly designated as "VB".
  • What are the beneficial effects of oil-water emulsions used as coolants in cutting processes?
    An emulsion is essentially a mixture of liquids that are typically immiscible. In the case of oil-water emulsions, which are intended for cutting, these two liquids are oil and water. An oil-water emulsion, when used in cutting, serves a dual purpose: it cools and lubricates. The water in the emulsion functions as a coolant, while the oil acts as a lubricant. Therefore, this emulsion serves as a cooling lubricant. Oil-water emulsions are also known as cutting or machining emulsions, soluble oils, and semi-synthetic coolants.
  • What is the purpose of honing the cutting edge?

    The process of honing the cutting edge involves rounding and smoothing the edge, which helps to eliminate various micro-defects and flaws that may have developed during the tool's production.

    In the manufacturing of coated indexable inserts and solid tools made from cemented carbides, honing is a common technological requirement. This is because the coating substance often accumulates on the sharp edge throughout the coating operation, and honing is essential to remove an unwanted excessive deposition in such cases.

    Do not confuse this with honing, which is a process of fine hole machining performed using a special abrasive tool known as a "hone".

    Fräswerkzeuge mit Wendeschneidplatten allgemein
  • Was versteht man unter einem Schneidenwinkel bzw. einem Anstellwinkel?
    Es gibt verschiedene internationale and nationale Standards zur präzisen Definition der Geometrie von Zerspanungswerkzeugen. Der “Schneidenwinkel ” ist der Winkel zwischen der Hauptschneide eines Fräsers und der plane containing the direction of feed motion. Der "Anstellwinkel" ist der ergänzende Winkel zum Schneidenwinkel, d. h. die Summe beider Winkel beträgt 90°. Zum Beispiel, bei einem typischen Fräser ist der Schneidenwinkel der Winkel zwischen der Schneidkante und der plane, which the cutter generates. Beträgt dieser Winkel 60°, so ist der Anstellwinkel 30°. Nur bei 45°-Fräsern sind der Schneidenwinkel und der Anstellwinkel.
  • Was ist der Unterschied zwischen "Planfräser" und "Aufsteckfräser"?
    Diese beiden Begriffe beschreiben zwei unterschiedliche Eigenschaften von Fräsern. Fräser teilt man in folgende Kategorien ein: Oberflächentyp: plane Fläche, Schultern, 3D-Flächen usw. Cutter mounting method: on mandrel oder Aufnahmedorn, im Werkzeughalter, direkt in der Spindel Structure: monolithic; assembled Schneidstoff: Hochgeschwindigkeitsstahl, Schwermetall, Keramik usw.) Ein "Planfräser" wird eingesetzt zur Herstellung planer Flächen mit der Stirnseite des Fräsers. Der Begriff "Aufsteckfräser" bezieht sich auf die Konfiguration eines Fräsers: der Fräser verfügt über eine mittige Bohrung für die Montage in einen Aufnahmedorn. Diese Konfiguration ist für Planfräser gängig.
  • What is the difference between heavy and heavy-duty milling?
    Sometimes the terms “heavy” and “heavy-duty” are used mistakenly as synonyms. In principle, “heavy milling” (and “heavy machining") relates to milling large-sized and heavy-weight workpieces on powerful machine tools and refers more to the dimensions and mass of a workpiece. “Heavy-duty” specifies a degree of tool loading and mainly characterizes a mode of milling.
  • Welche Bearbeitungsbedingungen werden als ungünstig und welche als instabil definiert?
    Ungünstige Bearbeitungsbedingen sind: Werkstück mit einer Haut(z. B. Silikat oder Schlacke) signifikant unterschiedliches Aufmaß starke Schnittlast aufgrund unebener Werkstückfläche Oberfläche mit hoch-abrasiven Einschlüssen Der Begriff "instabile Bearbeitungsbedingungen" bezieht sich auf die Instabilität des kompletten Systems(Werkzeugmaschine, Werkstückspannung, Werkzeug, Werkstück) aufgrund: labiler Werkzeug- und Werkstückspannung großer Auskraglänge labiler Werkzeugmaschine dünnwandiger Werkstücke Die Begriffe "ungünstig" und "instabile" sind nicht austauschbar.
  • Wie wird die mittlere Spandicke gemessen?
    Im Fräsen ist die Spandicke nicht konstant, sie variiert - abhängig von verschiedenen Faktoren - während dem Fräsvorgang, abhängig von verschiedenen Faktoren. Die mittlere Spandicke (hm) ist ein virtueller Parameter, der die mechanische Belastung auf einen Fräser und eine Werkzeugmaschine kennzeichnet. Für die Berechnung der mittleren Spandicke hm gibt es unterschiedliche Methoden. Das gängigste Verfahren ist die Berechnung der mittleren Spandicke Verhältnis zur Hälfte des Eingriffswinkels , wobei letzterer is the central angle that corresponds to the arc of a contact between a milling cutter and a workpiece. BITTE ERGÄNZEN / VIELEN DANK!!!!!
  • Was versteht man unter Hochdruckkühlung (HPC) bzw. Ultrahochdruckkühlung (UHPC)?
    Für Hochdruck- und Ultrahochdruckkühlung gibt es keine strikten Definitionen. In der Regel sind Werkzeugmaschinen für einen Kühlmitteldruck von 10 - 15 bar ausgelegt. Dieses Niveau wird heute als niedriger Kühlmitteldruck definiert. Verschiedene moderne Bearbeitungszentren verfügen über die Option von 70 - 80 bar, was als Hochdruckkühlung bezeichnet wird. Ultrahochdruck bezieht sich auf 100 - 200 bar und mehr. Einige Hersteller von CNC-Werkzeugmaschinen stellen Pumpen für "mittleren Druck" her; diese haben Ventile für bis zu 50 bar.
  • Was ist der Nutzen des Fräsens mit Hochdruckkühlung?
    Bei der Metallzerspanung wird immer Wärme erzeugt, insbesondere beim Fräsen. Wenn die Wärmeentwicklung stark ist, bildet niedriger Kühlmitteldruck eine Dampfsperre auf den Oberflächen von Werkzeug und Werkstück. Diese Schicht wirkt wie ein Hitzeschild. Es entsteht eine Barriere, welche die Wärmeableitung aus der Schnittzone erschwert und damit die Werkzeugstandzeit verringert. Punktgenaue Hochdruck-Kühlmittelzuführung auf die Schneidkanten durchdringt diese Barriere und trägt zur Lösung der Problematik bei. Hochdruckkühlung kühlt die erzeugten Späne schnell herunter, sie werden dadurch hart und spröde. Die entstehenden dünnen, kleinen Späne sind leichter zu kontrollieren und abzuführen. Der schnelle Kühlmittelstrom spült die Späne weg, die Spanevakuierung wird erheblich verbessert und erneutes Zerspanen der bereits erzeugten Späne vermieden. Hochdruckkühlung verlängert die Standzeit einer Schneidkante, da Oxidations- und Adhäsionsverschleiß minimiert werden und die Resistenz gegen Ausbrüche verbessert wird. Da mit Hochdruckkühlung kleine Späne erzeugt werden, kann man Fräser mit kleineren Spannuten konstruieren, was wiederum eine engere Zahnteilung ermöglicht. Effektive Kühlung der Schnittzone stellt größere Schnittbreiten sicher. Insgesamt ist Hochdruckkühlung eine gute Option für höhere Schnittgeschwindigkeiten und Vorschubwerte und letztendlich zur Produktivitätssteigerung.
  • Worin besteht der Unterschied zwischen Fräsen mit Hochdruckkühlung mittels innerer, zielgerichteter Kühlmittelzuführung und Drehen mit Hochdruckkühlung?
    Das Drehwerkzeug hat eine Schneidkante, während das Fräswerkzeug über mehrere Zähne und somit mehr Kühlmittelaustritte verfügt. Ein Wendelschaftfräser mit Wendeschneidplattensets benötigt viel mehr Kühlmittelaustritte. Zwischen Druck, Geschwindigkeit und Durchflussvolumen des Kühlmittels besteht ein spezifischer Zusammenhang. Beim Fräsen mit innerer Kühlmittelzuführung muss die Hochdruckpumpe bestimmte Voraussetzungen erfüllen, um den korrekten Volumenfluss sicherzustellen, nicht nur den Druck an sich.
  • Bietet ISCAR in seinem Standardprogramm Wendeschneidplattenfräser für Hochdruckkühlung?
    Ja, ISCAR bietet angepasste Fräserlinien für die Bearbeitung von Titan und hoch hitzebeständigen Superlegierungen.
  • Warum werden für die Kühlmittelaustritte in Wendeschneidplattenfräsern für Hochdruckkühlung Düsen verwendet?
    Dafür gibt es zwei Gründe: einen technologischer und einen anwendungstechnischen. Hochdruckkühlung durch den Fräskörper erfordert Kühlmittelaustritte mit kleinem Durchmesser. Einschraubbare Düsen optimieren die Gestaltungsmöglichkeiten, da das Einbringen von Kühlmittelaustritten mit kleinen Durchmessern in Stahlwerkzeugen technisch anspruchsvoll und limitiert ist. Bei einer Schnitttiefe kleiner als die max. Länge eines Wendelschaftfräsers ist es nicht erforderlich, die Schneidenbereiche, die nicht am Zerspanprozess beteiligt sind, mit Kühlung zu versorgen. Zur Verbesserung der Zerspanleistung können die Austrittsdurchmesser der Düsen der dementsprechenden Pumpenleistung angepasst werden.
  • Warum wird eine große Anzahl von Fräsern für Hochdruckkühlung nur als Sonderwerkzeug gefertigt?
    Die meisten Endanwender von Fräsern für Hochdruckkühlung bearbeiten schwer zerspanbare Werkstückstoffe, wie z. B. Titanlegierungen. Oftmals muss eine große Menge an Material abgetragen werden. Um die Produktivität zu erhöhen, werden meist spezielle Werkzeugmaschinen eingesetzt, und - um eine maximale Steifigkeit zu erreichen - Kompaktwerkzeuge mit direkter Anbindung an die Maschinenspindel bevorzugt. Spezifische Werkzeugdurchmesser, Fräserlängen und Auskragungen sowie Aufnahmen, die von Anwender zu Anwender variieren, verlangen nach Fräsern für Hochdruckkühlung, die gemäß Anwenderspezifikation gefertigt werden.
  • Welche Produktfamilien enthält ISCARs Linie für Fräswerkzeuge?
    Diese Linie umfasst Fräswerkzeuge zum Fräsen von 90°-Schultern, Planfräsen, Eckfräsen, für die Bearbeitung hoher Schultern, zum 3D-Profilfräsen, Scheiben- und Nutenfräsen, Fasfräsen usw. Es gibt außerdem Werkzeuglinien für die spezielle Bearbeitungstechnik des Hochvorschubfräsens.
  • Die Logos von ISCARs Fräswerkzeug-Linien beginnen mit ;HELI” (abgeleitet von “helix”), und Begriffe wie “helikale Schneidkante” und “helikales Fräsen” werden oft als technische Vorteile hervorgehoben. Warum?
    In den frühen 1990er Jahren hat ISCAR HELIMILL auf den Markt gebracht – diese Linie bietet Fräswerkzeuge für einseitige Wendeschneidplatten mit helikaler Schneidkante. Die helikale Schneidkante, welche dem Drallwinkel eines Vollhartmetallfräsers nachempfunden wurde, bietet im montierten Zustand konstante Frei- und Spanwinkel über die komplette Schneidenlänge. Diese innovative Idee war ein absoluter Durchbruch und dient noch heute als Maßstab bei der Konstruktion von Fräswerkzeugen mit auswechselbaren Schneiden. Das Wording “HELI” weist auf die helikale Schneidkante hin, der speziellen Eigenschaft dieser innovativen Fräswerkzeuge.
  • Bietet ISCAR Wendeschneidplattenfräser für die Bearbeitung von Aluminium?
    Ja. ISCAR hat eine umfangreiche Palette an Wendeschneidplattenfräsern speziell für die effiziente Aluminiumbearbeitung entwickelt. Jede Werkzeuglinie verfügt über integrale oder leichtgewichtige Fräskörperdesigns, spezielle Klemmungen der Wendeschneidplatten, Systeme mit auswechselbaren Kassetten, geschliffene und polierte Wendeschneidplatten mit unterschiedlichen Eckenradien sowie last not least PKD-bestückte Wendeschneidplatten. Ein Großteil der Werkzeuge verfügt über innere Kühlmittelkanäle. Die Linie HELIALU von ISCAR ermöglicht hohe Schnittgeschwindigkeiten (HSM) bei der Bearbeitung von Aluminium und stellt gleichzeitig hohe Zeitspanvolumina sicher (MRR). 
  • Der Begriff “hoch positiv” wird oft im Zusammenhang mit Wendeschneidplattenfräsern genannt. Was bedeutet das genau?
    Generell bezieht sich dieser Begriff auf die Spanwinkel eines Wendeschneidplattenfräsers. Fortschritte in der Pulvermetallurgie ermöglichen helikale Schneidengeometrien mit einer Spanfläche, die in Bezug auf die Schneidkante stark geneigt ist. Daraus resultieren wiederum größere positive´Spanwinkel (regulär und axial). Die Definition “hoch positiv” unterstreicht dieses Merkmal.  Hinweis: Sie reflektiert den aktuellen technologischen Stand der Technik.  Da die Herstellung von Werkzeugen mit Hartmetall-Wendeschneidplatten sich ständig weiter entwickelt, kann man davon ausgehen, dass “hoch positiv" in der nahen Zukunft als “normal” betrachtet wird. 
  • Wendeschneidplatten werden meist aus Hartmetall-Schneidstoffen hergestellt. ISCAR bietet eine große Vielfalt an Schneidstoffsorten. Wo findet man Informationen über die Eigenschaften einer Schneidstoffsorte sowie die empfohlenen Schnittgeschwindigkeiten und Anwendungsbereiche?
    ISCAR bietet umfangreiche elektronische Kataloge und Suchfunktionen sowie Kataloge in Papierform, welche den Substrat-Typ, die Beschichtung sowie den Anwendungsbereich gemäß ISO-Norm und die empfohlenen Schnittgeschwindigkeiten spezifizieren. Der für Ihre Verkaufsregion zuständige ISCAR-Außendienstmitarbeiter unterstützt Sie außerdem gerne kompetent bei der Auswahl der für Ihre Bearbeitung am besten geeigneten Schneidstoffsorte.
  • Verfügen Wendeschneidplattenfräser über innere Kühlmittelzuführung?
    Nahezu alle in der jüngsten Vergangenheit auf den Markt gebrachten Wendeschneidplattenfräser verfügen über innere Kühlmittelzuführung, zielgerichtet, direkt zu jeder Schneidkante.
  • Manche Aufsteck-Planfräser verfügen nicht über innere Kühlmittelkanäle. Wie modifiziert man diese Fräser, falls innere Kühlmittelzufuhr erforderlich ist?
    In den meisten Fällen ist keine Modifizierung notwendig. Stattdessen empfiehlt ISCAR Klemmschrauben mit einstellbaren Kühlmitteldüsen zur einfachen Lösung dieser Anforderung. Die Schrauben sichern nicht nur den Aufsteckfräser auf dem Aufnahmedorn, sondern liefern auch eine effektive, Kühlmittelzuführung direkt in die Schnittzone und verbessern die Spanabfuhr. Die Kühlmitteldüse, als bewegliches Teil der Schraube, ermöglicht eine einfache und schnelle Einstellung der Kühlmittelzufuhr, abhängig von der Auskraglänge des Fräsers, Wendeschneidplattengröße oder Anforderungen der Bearbeitung.
  • Wie stellt man das Anziehen des korrekten Anzugdrehmoments für Klemmschrauben von Wendeschneidplatten sicher?
    In den Linien für Fräswerkzeuge bietet ISCAR zwei Typen von Drehmomentschlüsseln: mit einstellbarem oder mit fixiertem Drehmoment. Der erst genannte Typ ermöglicht es dem Anwender, das Drehmoment innerhalb eines vorgegebenen Bereichs einzustellen. Der zweite Typ verfügt über ein voreingestelltes Drehmoment. ISCAR-Kataloge und weitere technische Publikationen geben Auskunft über das jeweilig erforderliche Drehmoment für Klemmschrauben. Des Weiteren ist diese Angabe mittlerweile auf dem Fräskörper eingraviert.
  • Welcher Parameter eignet sich besser für die Steuerung der Produktivität – Variierung des Vorschubs oder der Schnitttiefe innerhalb angemessener Begrenzung?
    Auf diese Frage gibt es keine eindeutige Antwort, da sie von mehreren Faktoren abhängig ist. Generell kann jedoch gesagt werden, dass beim gleichem Zeitspanvolumen eine Erhöhung des Vorschubs in Kombination mit reduzierter Schnitttiefe günstiger ist, als die umgekehrte Variation. Diese Strategie führt in der Regel zu längeren Standzeiten.
  • Wie findet man produktivere Fräswerkzeuglösungen für eine spezifische Bearbeitung?
    Wenn die Schnittparameter bekannt sind, ist der ITA (ISCAR Tool Advisor) - ein elektronischer Werkzeugberater auf ISCARs Homepage - ein sehr hilfreiches Tool. Diese freie Software kann auch auf Smartphones heruntergeladen werden. Für weitere, detailliertere Unterstützung setzen Sie sich bitte mit dem für Ihre Verkaufsregion zuständigen Außendienstmitarbeiter in Verbindung.
  • Was ist Dreh-Fräsen?
    Beim Dreh-Fräsen bearbeitet ein Fräser ein rotierendes Werkstück. Dieses Verfahren kombiniert Fräs- und Drehtechnik und bietet viele Vorteile.
  • Welches sind die Vorteile des Dreh-Fräsens gegenüber klassischer Drehbearbeitung?
    Das Drehen von ungleichmäßigen Oberflächen kennzeichnet sich durch unterbrochenen Schnitt, was in unerwünschter Schnittlast, schlechter Oberflächengüte und vorzeitigem Werkzeugverschleiß resultiert. Beim Dreh-Fräsen kommt ein Fräser, der für unterbrochenen Schnitt mit zyklischer Schnittlast geeignet ist, zum Einsatz. Beim Drehen von langspanenden Werkstückstoffen ist die Entsorgung der Späne schwierig. Die geeignete Spanformergeometrie festzustellen ist ebenfalls schwierig. Ein für das Dreh-Fräsen eingesetzter Fräser erzeugt kurze Späne, was die Handhabung des Späneabfalls erheblich erleichtert. Beim Drehen exzentrischer Bereiche von rotierenden Bauteilen (Kurbelwellen, Nockenwellen usw.) verursachen exzentrische Massen von Bauteilen unausgeglichene Schnittkräfte, was sich nachteilig auf die Zerspanleistung auswirkt. Dreh-Fräsen minimiert diesen negativen Effekt deutlich aufgrund der geringen Rotationsgeschwindigkeit. Beim Drehen ist die Rotation schwergewichtiger Bauteile, was die Schnittgeschwindigkeit definiert, begrenzt durch die Leistungsmerkmale des Hauptantriebs. Erlaubt es der Antrieb nicht, große Massen mit der erforderlichen Geschwindigkeit zu rotieren, ist die Schnittgeschwindigkeit weit vom Optimum entfernt, was sich in einer schlechten Zerspanleistung niederschlägt. Dreh-Fräsen ist eine Möglichkeit, diese Problematik zu bewältigen.
  • Wie berechnet man Schnittdaten für das Dreh-Fräsen?
    Die Berechnungsmethode findet man in der gedruckten Ausgabe der ISCAR-Broschüre “Welcome to ISCAR’s World". Die elektronische Version findet Sie unter www.iscar.de. Benötigen Sie weitere Unterstützung, berät Sie zusätzlich Ihr Ansprechpartner im technischen Außendienst.
  • What is the difference between radial chip thinning and axial chip thinning?
    Chip thinning refers to decreasing maximum chip thickness hmax compared to feed per tooth fz.
    Two factors cause this decrease:
    • Cutting geometry of a milling tool, specifically the tool cutting edge angle χr when it is less than 90° ("axial chip thinning"). Good examples of axial chip thinning are fast feed milling and machining 3-D surfaces at shallow depth of cut by ball nose or toroidal-shape milling tools.
    • Influence of width of cut ae. If ae in peripheral milling and face milling is smaller than the radius of the milling tool, hmax becomes lower than fz. This effect is known as “radial chip thinning”. Understanding chip thinning is very important. Maintaining necessary chip thickness requires appropriate increase of feed per tooth and is a key element for correctly programmed fz.
  • What is a slab mill?
    A slab mill is a type of a cylindrical (plain) milling cutter – a milling tool with helical cutting teeth on its cylindrical periphery. Slab mills generally feature large sizes and have a central bore for arbor mounting, mainly in horizontal milling machine tools. Slab mill length is considerably greater than its diameter. These mills are intended for machining an open surface (mostly plane) of a workpiece when the surface width is less than the mill length. Slab mills were very common in the past but today they are used quite rarely.
  • Was sind die Vor- und Nachteile der Wendeschneidplattenfixierung mittels Keilklemmung?
    Der größte Vorteil der Keilklemmung ist ein schneller und einfacher Wendeschneidplatten- oder Schneidkantenwechsel. Bei Planfräsern, insbesondere großen Werkzeugen, ist Keilklemmung eine sehr häufige Klemmmethode. Diese Fräser arbeiten in der Regel unter schwierigen Bedingungen und laufen oft heiß. Für solche Fräser bevorzugen Maschinenbediener deshalb oft die Keilklemmung. Ein Nachteil jedoch ist, dass die Keilklemmung ein Hindernis für den Spanfluss darstellt, was sich negativ auf die Zerspanleistung des Fräsers auswirkt. Intensiver Kontakt zwischen Spänen und dem Klemmkeil führt zum Verschleiß des Klemmkeils. Verschmutzungen der Klemmkeile können zusätzliche Beeinflussungen verursachen.
  • What are the advantages and disadvantages of clamping inserts in milling cutters by wedge?
    The main advantages of clamping indexable inserts in a milling cutter by wedge are quick and easy insert replacement or changing a worn cutting edge of the insert (the insert indexing). Clamping by wedge is more common for indexable face mills, especially large-sized. These mills usually work in tough conditions and often become hot. Machine operators prefer the wedge clamping design for such mills.
    However, the wedge, an additional part above the insert in the cutter structure, produces an obstacle for chip flow in the cutter chip gullet, which worsens chip evacuation and reduces cutter performance. This is a major disadvantage of wedge clamping. Intensive contact between the chips and the wedge results in the detrition wear of the latter and shortens its tool life.
  • How to estimate tool life for ceramic cutting tools?
    Ceramic tools behave differently than carbide tools. In most cases, the end of a tool life is determined by the acceptable level of burrs and not by wear size.
  • What is a router?
    In machining, the term "router" has several meanings. It may refer to a rotating tool for hollowing out ("routing") wood and plastic materials. "Router" refers also to a 3-axis CNC machine for cutting soft materials, such as wood, using a rotating tool. In metalworking, a "router" usually means an endmill, intended for milling aluminum at high cutting and feed speeds.
  • Flute or chip gullet?
    In milling cutter terminology, both words designate a chip space or a chip pocket – the shaped area of a milling cutter body that is intended for the flow of chips that are formed as a result of cutting. This space must be sufficient to enable a free, unrestricted chip flow. The term "chip gullet" is generally used to specify the chip space of indexable milling cutters, whereas "flute" is mainly applied to a solid mill design, where it means a helical groove that ensures chip flow and produces a sharp cutting edge or a mill tooth by one of its edges.
  • Chip breaker or chip former?
    A chip breaker is an area of a tool rake face that is specially shaped for breaking or controlling (forming) the produced chip. The term "chip breaker" is commonly used in turning operations, where breaking a long chip is one of the key success factors. In milling, the term "chip former" is generally used, as milling is an interrupted, "chip breaking" cutting process that focuses on chip forming.
  • Which depth of cut percentage is recommended with respect to the insert cutting edge length?
    In process planning, depth of cut is defined depending on operation, machine tool characteristics, rigidity and other factors.
    ISCAR catalogs specify the maximum depth of cut for each insert. Maximum depth of cut refers to the maximal length of the insert cutting edge that can machine.
    This value must not be exceeded. In most cases, inserts are operated at cutting depths of no more than 2/3 of the specified maximum.
  • What is "chip load"?
    The term "chip load" is often used as a synonym for the term "feed per tooth". This term is more common for the North American market. However, the correct synonym for "chip load" is "chip thickness". In shop talk "chip load" relates usually even to maximum chip thickness.
    In North American countries the term "feed rate" is often used instead of the ISO definition "feed speed". While on this subject, manufacturers can refer to "feed speed" as "table feed". The original term "table feed" refers to a classical milling machine, from previous generations, where feed motion was created by movements of the machine table.
  • What is the difference between "wiper flat" and "wiper insert"?
    A wiper flat is a small minor edge on a regular indexable insert in milling cutters to improve the quality of a machined surface. It is often referred to as a “wiper”.
    A wiper insert is a specially designed insert where the wiper flat is significantly larger than for a standard insert. When mounted in a milling cutter, the wiper insert protrudes 0.05…0.07 mm axially relative to a regular insert. A wiper insert "smooths down" the machined surface, noticeably improving surface finish.
  • What is "stepover" and what is "stepdown"?
    In multi-pass milling, "stepover" and "stepdown" refer to the distance between two adjacent passes. "Stepover" relates to this distance when, after finishing a pass, the milling cutter moves sideward and then performs the next pass. By contrast, if at the end of a pass the milling cutter moves downward to start the next part, the distance is called "stepdown". Sometimes "stepover" and "stepdown" are referred to as "sidestep" and "downstep" correspondingly although this is less common.
  • What is the difference between "gang milling" and "straddle milling"?
    Straddle milling is a type of gang milling.
    In gang milling, an assembled tool comprising two or more milling cutters mounted in the same arbor, machines several workpiece surfaces simultaneously. In straddle milling, two or more side-and-face milling cutters, mounted in one arbor, machine parallel planes of a workpiece. The planes are perpendicular to the arbor axis and feature an exact distance (distances) between them. To ensure the necessary accuracy of the distance (distances), the milling cutters are spaced apart with the use of bushings and spacers.
  • What is an "on-edge" insert?
    This term is used sometimes as another name for a tangentially clamped insert. When mounted in a cutter, the insert is placed "edgeways" ("on -edge"), and the largest cross-section of the insert is under the working cutting edge.
  • What is the difference between rough milling and finish milling?
    Rough milling focuses on high metal removal rates while finish milling assures precise accuracy on the milled surface.
    As a rule, finish milling features significantly smaller machining allowances when compared with rough milling.
  • What are the main types of edge conditions for indexable inserts?
    The cutting edge of an indexable insert may be sharp, rounded or chamfered. These are the basic types of edge conditions, also referred to as "edge preparation".
    In addition to the above, there are combined edge conditions such as chamfered and rounded, double-chamfered, and double-chamfered and rounded.
    A rounded edge can also be referred to as a "honed edge".
  • What are the advantages and disadvantages of wedge clamping indexable inserts?
    The wedge clamping principle, which is an alternative to a screw clamping concept, provides a more durable insert structure; there is no need for a central bore. A wedge clamp ensures quick and easy indexing and is very important when the insert is extremely hot due to heavy machining conditions.
    The wedge clamping method is most suitable for machining materials that produce short chips (i.e., cast iron).
  • When should I replace insert clamping screws that secure indexable inserts in the body of a milling cutter?
    An insert clamping screw requires thorough visual examination before using a milling cutter. The threads and head of the screw, as well as the socket for a key, should all be in good operating condition, and therefore, demand special attention. If these screw elements are damaged, or the screw is bent, the screw must be replaced immediately.
    When tightening a screw, apply the correct tightening torque and use the right key to prolong the wear life of the screw. Also, do not forget ISCAR’s recommendations for the application of an anti-seize lubricant when replacing an insert or its indexing. Following these obvious, but sometimes forgotten rules will increase the screw life.
  • How to determine when to replace an insert (change its cutting edge), a solid tool or an exchangeable head?
    The correct answers are: At the end of the tool life or upon reaching the wear limit. The life period of a tool or the wear limit for a cutting tool depends on various designs, operational and administrative factors.
    At the same time, during a machining operation, there are certain signs that can indicate the need to replace inserts, tools, or heads.
    • Noticeable increase of power consumption (spindle load)
    • Increased vibration and noise
    • Worsening of machining accuracy and a need for frequent additional tool dimensional adjusting
    • Reduced surface finish
    • Occurred burrs
    • A visual inspection of a cutting edge shows considerable flank wear, extensive edge chipping, cracks etc.
    For more detailed data on how to define a tool’s life in a specific case, we recommend contacting an ISCAR technical representative.
  • What is the principal difference between a "triangular" and "trigon" indexable insert?
    To be exact, both triangular and trigon relate to the same shape of a polygon – a triangle. A triangular insert features a triangular shape. In a trigon insert, the side of a polygon comprises two-line segments that have the same length and form an obtuse angle.
    From a geometrical point of view, a convex isotoxal hexagon is an accurate definition for the trigon insert shape. Under certain assumptions, this shape may also be referred to as a truncated triangle. However, neither of these names are commonly used, instead, trigon is the most known term today.
    To conclude: the trigon shape of an indexable insert relates to the form of a convex isotoxal hexagon.
  • What is the main design feature of a TANGFIN indexable face mill for superb finish of a machined surface?
    A TANGFIN face mill is based on a step-cutter-concept: the inserts are positioned in gradual locations on the mill in both radial and axial directions. This design causes each insert to cut only a small portion of the material in both radial and axial directions. The high surface quality is attained thanks to a very rigid clamping of the inserts together with the long and straight insert minor cutting edges. A final surface texture is provided by the axially protruding insert that serves as a wiper insert.
    Hence, the combination of the step-cutter robust design and the long wiper cutting edge, which is produced by the axially protruding insert, results in impressive surface finish parameters.
  • Within its range of products, ISCAR has a few families of small-sized milling cutters carrying miniature indexable inserts. What is the main field of their application, and what advantages can these cutters provide?
    These families feature a diameter range that is traditionally connected with solid carbide endmills. However, in milling with shallow depths of cut, only a part of the cutting length is used, which makes applying a solid carbide endmill inefficient in many cases, especially in rough machining operations. In contrast, cutters with miniature indexable inserts are not only intended for such applications but ensure rational utilization of cemented carbide due to the indexing capability of an insert. Hence, the small-sized indexable milling cutters provide a reasonable, cost-effective alternative to solid carbide endmills, mostly in rough cuts.
  • What is the difference between semi-roughing and semi-finishing in milling?
    The difference can be blurred and may often be considered synonyms. However, in some cases when milling a surface requires more than one operation, these operations are specified as rough milling, semi-rough milling, semi finish milling, finish milling, fine milling or simply roughing, semi roughing, semi finishing, finishing.
    Incidentally, the same situation may be observed not only in milling but also in other types of machining, such as turning.
  • What is an integral collet?
    Generally, an integral collet is a tool with a tapered shank for direct mounting in ER collet chucks. When compared to a typical spring collet clamp, the integral collet provides better accuracy and higher rigidity.
  • Do ISCAR's integral collets have internal coolant channels?
    In general, yes, for example, ISCAR's integral collet families with MULTI-MASTER adaptation.
  • What is abreast milling?
    Abreast milling is the method of simultaneous milling of several parts that are positioned in a row parallel to the milling cutter axis.
  • What is the pitch of a milling tool?
    The pitch is the distance between the two nearest-neighboring teeth of a milling tool measured between the same points of the teeth's cutting edges. The pitch shows the tooth density of a tool, in accordance with the milling tools which differ from the tools with a coarse, fine, and extra fine pitch. Parallel to coarse-fine-extra fine pitch rating, alternative grading such as: coarse-regular-fine, normal-close-extra close and others, exists. In addition, extra-fine pitch tools are also referred to as high-density cutters.
  • What is the main application of indexable shell mills with a titanium body?
    Titanium-body indexable shell mills are intended mostly for long-reach machining applications. To improve results and to achieve an excellent surface finish, it is recommended to mount the milling cutter on tool holders with an anti-vibration mechanism, such ISCAR's WHISPER LINE adaptors.
  • Which factors should be considered when determining the feed speed for milling by use of interpolation?
    When determining the feed for milling by interpolation, it is important to consider that the feed speeds (feed rates) of the cutting edge and the mill axis are different. This is unlike straight-line milling. In milling by use of helical and circular interpolation, the programmed feed speed in most CNC machines refers specifically to the axis of the cutter. When milling inside surfaces by interpolation, the feed speed of the mill axis is slower than that of the cutting edge. Conversely, when milling outside surfaces by interpolation, the feed speed of the mill axis is faster than that of the cutting edge. It is necessary to consider the above difference in feed speeds when setting the cutting data.
  • What is a "no mismatch" 90°-indexable milling tool?
    In machining square shoulders, the height of the shoulder can exceed the maximum depth of cut that is determined by the cutting length of an indexable insert mounted on a given tool. In such cases, multiple passes are required for shoulder milling. "No mismatch" refers to the ability of a precise indexable milling tool to ensure a true 90° shoulder profile without a noticeable border, step, or burr between the passes. This feature is essential for accurate square shoulder milling.
  • What is string milling?
    String milling is the milling method where a mill sequentially machines several workpieces that are arranged closely in the feed direction, resembling a string.
  • What is a sprocket cutter?
    A sprocket cutter is a type of form milling cutter specifically designed for machining sprockets of roller chain wheels. It may also be referred to as a sprocket-wheel cutter or chain sprocket cutter.
  • What is a step milling cutter?
    A step milling cutter is a type of mill with teeth that are equally displaced relative to each other in either the axial or radial direction. If the teeth are used by use of indexable inserts, the cutter is referred to as an indexable step milling cutter.
    Fräswerkzeuge zur Bearbeitung von Formen und Profilen
  • Worin besteht der Unterschied zwischen Profilfräsen, Konturfräsen und Fromfräsen?
    Grundsätzlich beziehen sich diese drei Definitionen auf die gleiche Sache: das Fräsen von 3D-Flächen.
  • Welche Industriebereich charakterisieren sich durch eine Vielzahl von Profilfräsbearbeitungen?
    Zuallererst kann hier der Werkzeug- und Formenbau genannt werden, gefolgt von der Luft- und Raumfahrtindustrie, jedoch wird in nahezu jedem Industriezweig bis zu einem gewissen Grad Profilfräsen angewendet.
  • Welches sind die gängigsten Werkzeuge für Profilfräsbearbeitungen?
    Zum Schruppfräsen, dem "Vorformen" von 3D-Flächen werden unterschiedliche Werkzeuge eingesetzt, auch 90°-Fräser für allgemeine Anwendungen. Hochvorschubfräser sind hocheffiziente Schruppwerkzeuge. Die meisten Profilfräsbearbeitungen werden jedoch mit torischen Fräsern und Kugelkopffräsern durchgeführt, da diese in jede Bearbeitungsrichtung eine präzise Form sicherstellen. * gehen Sie zum entsprechenden Bereich in den FAQs
  • Hat ISCAR Wendeschneidplatten mit Spanteilergeometrie für Profilfräsbearbeitungen im Programm?
    Ja und zwar mit der MILLSHRED-Linie mit auswechselbaren Fräsköpfen und runden, segmentierten Wendeschneidplatten,
  • Was it der effektive Fräserdurchmessers eine Fräswerkzeugs?
    Im Profilfräsen hängt der Fräserdurchmesser aufgrund der nicht geradlinigen Werkzeugform mit der Schnitttiefe zusammen; and it is not the same for different areas of the tool cutting edge that is involved in milling. Der effektive Durchmesser is´t der größte largest true cutting diameter: maximum of the cutting diameters of these areas. In calculating cutting data, it is very important to consider the effective diameter, because the real cutting speed relates to the effective diameter, while the spindle speed refers to the nominal diameter of a tool. BITTE UM UNTERSTÜTZUNG / ICH BLICKE NICHT DURCH / VIELEN DANK
  • Profilfräswerkzeugtypen umfasst das ISCAR-Programm?
    ISCARs Linien für Profilfräswerkzeuge enthalten Hochvorschubfräser, torische Fräser und Kugelkopffräser in folgendene Konfigurationen: Werkzeuge mit Wendeschneidplatten Vollhartmetall-Schaftfräser Auswechselbare Fräsköpfe mit MULTI-MASTER*Schnittstelle * Gehen Sie zum entsprechenden Abschnitt in den FAQs
  • Was versteht man unter Restfräsen?
    Produktive Fräsbearbeitungen erfordern den Einsatz von Werkzeugen mit längerer Lebensdauer und höherer Steifigkeit, um ein hohes Zeitspanvolumen zu erreichen. Oft erlauben die Form und die Abmessungen dieser Werkzeuge in manchen Bereichen keine Bearbeitung; wie beispielsweise in der Kavität einer Gesenkform. Der dadurch verbleibende restliche Werkstückstoff wird durch Restfräsen abgetragen – ein Werkzeug mit kleinerem Durchmesser bearbeitet die Bereiche mit dem restlichen Werkstückstoff.
  • Does ISCAR recommend the use of “plungers” for profile milling?
    Yes, in cases of large overhang we recommend the use of cutters/plungers on the Z axis, as this will result in a more productive milling operation with less vibration in profiling/roughing. The depth of cut for plungers with overhang is higher than ap for conventional systems, obtaining a higher metal removal rate. ISCAR offers a variety of plungers and, to achieve important lengths, we recommend use of the ITS modular system.
  • What is ISCAR's "rule of 12" for ball nose cutters?
    "The rule of 12" is a rule of thumb that may be useful for quick estimation of the relation between a depth of cut and a width of cut (a stepover) when milling ISO P materials (soft and pre-hardened steel, ferritic and martensitic stainless steel) by ball nose cutters. In accordance with the rule, if a depth of cut is the half of a cutter diameter (D/2), a recommended width of cut (a stepover) should be no more than D/6; for the depth of cut D/3 the maximal width of cut should be D/4 etc.
    It is not difficult to see that 2×6=3×4=12.
  • In face milling, a recommended width of cut is often given as a ratio to a tool diameter. When using a mill with round inserts, which tool diameter should I consider?
    The correct way to decide is by calculating the width of cut with the effective diameter of the mill with round inserts – the largest of the tool diameters that’s involved in cutting.
    This diameter is a function of the depth of cut, or by using the cutting diameter of a face mill for such a calculation. In accordance with standard ISO 6462, the cutting diameter is defined by the point that is produced by the intersection of the major cutting edge and the machined plane. This is the smallest tool diameter involved in cutting, while the cutting diameter is one of the main milling dimensions. This is also specified in the ISCAR catalog.
    Here are some rules for quick estimating the cutting diameter:
    If a face mill carries an even number of round inserts, the cutting diameter may be considered accurate enough as the distance between the centers of two opposite inserts. In other words, it is the mill’s maximum diameter minus the insert diameter.
    If the cutter has an uneven number of inserts, the cutting diameter is approximately equal to the doubled distance from the mill axis to an insert center.
    Using the maximum mill diameter as a base for calculating the width of cut is acceptable only when the depth of cut is close to the insert radius. In any other case, this calculation may cause intensive insert wear.
  • What is a form milling cutter?
    A form milling cutter is a general name for milling cutters that are intended for generating curve-based (complex) surfaces.
  • What is ISCAR's product range for barrel-shaped (circle segment) milling cutters?
    ISCAR's barrel-shaped milling cutter products comprise solid carbide endmills, MULTI-MASTER exchangeable carbide heads, and single-insert indexable endmills. According to the cutting profile, the shape of these cutters can be divided into pure barrel, oval, tapered, lens, and combined.
    Vollhartmetall-Schaftfräser
  • Bietet ISCAR Vollhartmetall-Schaftfräser für alle Werkstückstoffgruppen?
    Ja. ISCARs SOLIDMILL-Linie umfasst unterschiedliche Linien von Vollhartmetall-Schaftfräsern für die Bearbeitung unterschiedlicher Werkstückstoffe: Stahl, rostbeständiger Stahl, Gusseisen usw.. Es steht eine große Auswahl zur Abdeckung der Anwendungen in allen Werkstückstoffgruppen gemäß der ISO-Norm zur Verfügung: P, M, K, N, S und H.
  • Welche Typen von Vollhartmetall-Schaftfräsern bietet ISCAR als Standardwerkzeuge?
    Die meisten 90°-Schaftfräser, außerdem – Kugelkopffräser, Hochvorschubfräser, Fasfräser sowie Fräser zum Entgraten. Desweiteren hat ISCAR Schaftfräser für die HSM-Bearbeitung, insbesondere trochoidales Fräsen, im Programm.
  • Worin bestehen die Vorteile des trochoidalen Fräsens?
    In der Regel kommt trochoidales Fräsen bei der Bearbeitung von Nuten und Taschen zum Einsatz. bEIM trochoidalen Fräsen a fast-rotating tool moves along arc and “slices” a thin but wide layer of material. When the layer is removed, the cutter advances deeper into the material radially and then repeats the slicing. This method ensures uniform tool engagement and stable average chip thickness. Therefore, the tool experiences constant load that causes uniform wear and predictable tool life. The small thickness of sliced material significantly reduces heat impact on the tool, on the one side, and ensures increasing the number of the tool teeth, on the other hand. Das Verfahren ermöglicht hohe Abspanraten, eine reduzierte Leistungsaufnahme und längere Standzeiten. BITTE ERGÄNZEN / VIELEN DANK
  • What is a "trochoid"?
    "Trochoid", or "trochoidal curve", is a general name for a curve described by a fixed point on a circle as it rolls along a straight line or curves without slipping.
  • Was ist das Geheimnis der CHATTERFREE-Geometrie?
    CHATTERFREE steht für das spezifische Design mehrerer Linien für ISCAR Vollhartmetall-Schaftfräser. Die Hauptmerkmale von CHATTERFREE sind: ungleiche Teilung und variabler Spiralwinkel . Dieses Konzept resultiert in stark reduzierten Vibrationen bis hin zu deren kompletter Eliminierung und somit in stark verbesserter Zerspanleistung in längeren Standzeiten.
  • Was ist ein variabler Spiralwinkel?
    "Variabler Spiralwinkel" bezieht sich auf den Spiralwinkel in vibrationsfreien CHATTERFREE-Vollhartmetall-Schaftfräsern. Ein typischer Vollhartmetall-Schaftfräser hat helikale Schneidkanten, und der Spiralwinkel bestimmt die Neigung der Zähne. In herkömmlichen Schaftfräsern ist der Spiralwinkel aller Zähne derselbe, in vibrationsfreien Geometrien variiert dieser jedoch. Mit dem Begriff “variabler Spiralwinkel” verbindet man in der Regel zwei Merkmale: 1) Combining flutes with unequal helix angles where the angles are constant along every flute. BITTE ERGÄNZEN / DANKE 2) Variierende Spiralwinkel entlang der Zähne. Die Bezeichnung “variabler Spiralwinkel ist jedoch nur in Zusammenhang mit dem oben genannten 2. Merkmal korrekt. Beim 1. oben genannten Merkmal ist "unterschiedliche Spiralwinkel” die korrekte Bezeichnung.
  • Warum werden FINISHRED-Schaftfräser oft als “Two in One”-Werkzeug bezeichnet?
    FINISHRED-Schaftfräser sind 4-schneidig, dies sind 2 segmentierte Schneiden und 2 durchgehende Schneiden. Daraus entsteht die Schrupp-Schlicht-Geometrie, also “Two in One”. Die Werkzeuge ermöglichen Schruppparameter und erzeugen eine Semi-Finish bzw. Finish-Oberflächengüte. Auf diese Weise kann ein einziges Werkzeug zwei Schaftfräser ersetzen und die Bearbeitungszeit und Leistungsaufnahme drastisch reduzieren, also die Produktivität genauso drastisch erhöhen.
  • Bietet ISCAR Anleitungen für das Nachschleifen von Vollhartmetall-Schaftfräsern?
    Ja. Jeder Produktkatalog und diverse technische Broschüren enthalten diese Informationen. Selbstverständlich steht Ihnen auch unser zuständiger Außendienstmitarbeiter unterstützend hierfür zur Verfügung.
  • Was ist eine length series? BITTE ERGÄNZEN / DANKE
    Vollhartmetall-Schaftfräser desselben Typs variieren innerhalb einer Linie oftmals in der Gesamtlänge. Gemäß der Längeneinteilung gibt es kurze Fräser, mit mittlerer Länge oder lange Fräser. Zusätzlich gibt es teilweise noch Serien mit extra-kurzen oder extra-langen Fräsern. Grundsätzlich bieten kurze VHM-Schaftfräser die beste Stabilität und Steifigkeit, extra-lange VHM-Schaftfräser sind für tiefe Bearbeitungen ausgelegt.
  • Was ist ein slot drill? BITTE ERGÄNZEN / DANKE
    Als “Slot drill” bezeichnet man einen Schaftfräser, der can cut straight down. Slot drills have at least one center cutting tooth. Primary use of the slot drills is milling key slots. Normally, the slot drills are two-flite mills, but often they have three and even four flutes. BITTE ERGÄNZEN / DANKE ISCARs VHM-Kugelkopffräser sind 2- oder 4-schneidig. How to choose a more suitable number of flutes for a ball nose endmill? BITTE ERGÄNZEN / DANKE 4-schneidige Vollhartmetall-Kugelkopffräser stellen eine robuste und produktive Alternative für unterschiedliche Anwendungen dar, insbesondere für Vorschlicht- und Schlichtbearbeitungen. Im Gegensatz dazu, eignet sich die 2-schneidige Ausführung mit einer größeren Spanformernut besser für Schruppbearbeitungen und stellt eine bessere Spanevakuierung sicher. Auch zum Feinschlichten eignet sich diese Version, aufgrund der besseren Spanevakuierung. Beim Fräsen mit geringer Schnitttiefe sollte man bei der Berechnung des Vorschubs pro Zahn nur 2 effektive Zähne berücksichtigen; die Vorteile eines mehrschneidigen Designs werden reduziert. 2-schneidige Vollhartmetall-Schaftfräser sind hier die bessere Wahl.
  • ISCARs VHM-Kugelkopffräser sind 2- oder 4-schneidig. Wie wählt man die geeignete Zähnezahl für einen Kugelkopffräser aus.
    4-schneidige Vollhartmetall-Kugelkopffräser stellen eine robuste und produktive Alternative für unterschiedliche Anwendungen dar, insbesondere für Vorschlicht- und Schlichtbearbeitungen. Im Gegensatz dazu, eignet sich die 2-schneidige Ausführung mit einer größeren Spanformernut besser für Schruppbearbeitungen und stellt eine bessere Spanevakuierung sicher. Auch zum Feinschlichten eignet sich diese Version, aufgrund der besseren Spanevakuierung. Beim Fräsen mit geringer Schnitttiefe sollte man bei der Berechnung des Vorschubs pro Zahn nur 2 effektive Zähne berücksichtigen; die Vorteile eines mehrschneidigen Designs werden reduziert. 2-schneidige Vollhartmetall-Schaftfräser sind hier die bessere Wahl.
  • Bietet das ISCAR Vollhartmetall-Schaftfräserprogramm auch Schäftfräser für die Bearbeitung von Miniaturbauteilen?
    Die Antwort hängt von der Definition des Begriffs "Miniatur" ab. miniature. Die Übergänge zwischen den Begriffen “Mini”, “Micro”, “Miniatur” usw. sind eher fließend. Natürlich realisiert jeder den Durchmesserbereich, auf den sich diese Begriffe beziehen. ISCARs Linien für Vollhartmetall-Schaftfräser enthalten Durchmesser im 10tel Millimeterbereich. Beispielsweise beginnen Standard-Kugelkopffräser für die Bearbeitung von Stegen beim Mindestdurchmesser 0.1 mm.
  • Does ISCAR produce solid ceramic endmills? Where is their application most effective?
    ISCAR's product range includes a family of solid ceramic endmills. They are mainly applied to machining high temperature superalloys, heat resistant stainless steel, cast iron and graphite.
  • What are the applications for ISCAR's lens- and oval-shape solid carbide endmills and MULTI-MASTER exchangeable heads? (Related to MULTI-MASTER - 466)
    The lens- and oval-shape solid carbide endmills and MULTI-MASTER exchangeable heads are designed for 5-axis semi-finish and finish milling complex surfaces, especially in aerospace, medical and die & mold industries.
  • Is it possible to regrind ISCAR's lens- and oval-shape solid carbide endmills?
    The lens- and oval-shape solid carbide endmills features a complicated cutting shape and therefore they are not intended for regrinding.
    Modulare Fräswerkzeuge mit Wechselköpfen
  • Wie montiert man einen Fräskopf in einen Schaft?
    Ein Fräskopf besitzt 1. einen kurzen Zentrierkonus am Gewinde und 2. eine Plananlage, für eine korrekte Fräskopflage im Schaft. Durch den Zentrierkonus am Gewinde wird eine hohe Wiederholgenauigkeit erreicht. Das Gewinde sorgt für eine stabile und sichere Verbindung mit dem Schaft. Mittels eines speziellen Schlüssels wird das präzisionsgeschliffene Gewinde angezogen und gelöst.
  • Welches sind die Vorteile dieser Plananlage?
    Vor allem erhöht sie die Steifigkeit bei einem Werkzeug, das aus Schaft und Fräskopf besteht. Außerdem trägt sie zur Belastungsfähigkeit während der Fräsbearbeitung bei und sorgt für einen stabilen Bearbeitungsprozess sowie für eine Reduzierung von Vibrationen und Leistungsaufnahme. Eine hervorragende Wiederholgenauigkeit beim Fräskopfwechsel ist ebenfalls sichergestellt, und zeitaufwändiges erneutes Vermessen des Werkzeugs entfällt. Der Fräskopf kann innerhalb der Maschine gewechselt werden.
  • Was verbirgt sich hinter dem Begriff “the initial gap” ?
    Beim manuellen Anziehen des Fräskopfs stoppt dieser an einem bestimmten Punkt, und es entsteht die sogenannte Initial Gap, ein schmaler Spalt zwischen den Anlageflächen des Fräskopfs und dem Schaft. Ab diesem Punkt kann der Fräskopf nur noch manuell mit dem speziellen Schlüssel angezogen werden. Durch dieses Anziehen verformt sich der Anlagebereich des Stahlschafts in radialer Richtung. Erst dann entsteht eine kraftschlüssige Verbindung zwischen Fräskopf und Schaft. Dieser Spalt wird "Initial Gap" genannt und ist ein essentielles Merkmal der MULTI-MASTER-Schnittstelle. Abhängig von der jeweiligen Gewindegröße ist dieser Spalt nur einige Zehntelmillimeter groß. WICHTIG: Kann der Fräskopf manuell bis zur Anlagefläche des Schafts angezogen werden (es bleibt kein Initial Gap), ist das Schaftmaterial labil geworden, und der Schaft muss ausgetauscht werden.
  • Warum hat das MULTI-MASTER-Gewinde ein spezielles Profil?
    MULTI-MASTER-Fräsköpfe werden aus Schwermetall hergestellt. Obwohl dies ein extrem hitzebeständiges und hartes Material ist, verringert es die Belastbarkeit im Vergleich zu beispielsweise Schnellarbeitsstahl (HSS). Bei der Entwicklung von Schwermetallgewinden müssen deshalb vor allem Stressfaktoren reduziert werden.<br/> Die MULTI-MASTER-Schnittstelle ist außerdem relativ klein: die nominellen Durchmesser der Gewinde betragen 4-15 mm. Diese Abmessungen und die Notwendigkeit, den hohen Anforderungen an die Festigkeit gerecht zu werden, setzen dem Gewicht des Gewindeprofils möglicherweise Grenzen.<br/> All diese Faktoren machen die Verwendung von Standardgewinden problematisch und diktieren im Prinzip ein bestimmtes Gewindeprofil, das den Schnittstellenanforderungen entspricht. ISCAR hat daraufhin ein spezielles Gewindeprofil entwickelt, das unter der Bezeichnung “T-Gewinde” bekannt ist.
  • Welche MULTI-MASTER-Fräskopftypen hat ISCAR im Programm?
    • Vollhartmetall-Schaftfräsköpfe in verschiedenen Ausführungen– 90°, 45°, 60°, etc.
    • Profil-Fräsköpfe mit Kugelkopfgeometrien, torischen, konkaven Radien und weiteren Geometrien
    • Fräsköpfe zum Hochvorschubfräsen
    • Schlitz- und Nutenfräsköpfe für die Bearbeitung von Sicherungsringen, O-Ringen, T-Nuten, usw.
    • Gewindefräsköpfe
    • Fräsköpfe zum Zentrieren, Senken und Fasen
    • Gravurfräsköpfe
    Die Fräsköpfe verfügen über unterschiedliche Schneidenanzahlen, Spiralwinkel und Schneidengeometrien für die produktive Bearbeitung eines großen Werkstückstoffspektrums.
  • Was versteht man unter der wirtschaftlichen Ausführung eines Fräskopfs?
    Es gibt zwei Typen der MULTI-MASTER-Vollhartmetall-Schaftfräsköpfe.<br/> 1. MULTI-MASTER-VHM-Schaftfräsköpfe, die den ISCAR-Standard-VHM-Schaftfräsern entsprechen, sich jedoch in Gesamtlänge und Schneidkantenlänge unterscheiden. Ein Vorteil hierbei ist die große Auswahl der zur Verfügung stehenden auswechselbaren Fräsköpfe.(im Prinzip  die gesamte Standardlinie der VHM-Fräser). Beim Schlichten und Fräsen harter Werkstückstoffe wird der Zerspanungsprozess durch eine höhere Schneidenanzahl stabiler und produktiver. Diese Fräsköpfe werden aus abgestuften zylindrischen Rohlingen geschliffen.<br/> 2. Wirtschaftliche MULTI-MASTER-Vollhartmetall-Schaftfräserköpfe; ihre Form erhalten diese Fräsköpfe durch Pressen und Sintern sowie anschließendes Schleifen der endgültigen Form und Präzision. Diese Fräsköpfe verfügen über eine extrem stabile Schneide, so dass der Vorschub pro Zahn im Vergleich zum erst genannten Fräskopftyp enorm erhöht werden kann. Die Presstechnologie ermöglicht die Herstellung verschiedener komplexer Formen; die wirtschaftliche Ausführung hat nur zwei Schneiden.
  • Warum haben MULTI-MASTER-Schlüssel zwei Öffnungen?
    Die eine Öffnung ist für die mehrschneidigen MULTI-MASTER-VHM-Fräsköpfe des 1. Typs (siehe oben) bestimmt, die andere Öffnung für die wirtschaftliche Ausführung mit zwei Schneiden.
  • Bietet die MULTI-MASTER-Linie auch Werkzeuge zur Bohrungsbearbeitung?
    Ja. 60°, 80°, 90°, 100°, 120° und 60° Fräsköpfe sind nicht nur zum Fasen, sondern auch zum Senken und Zentrieren geeignet. Außerdem stehen Zentrierbohrköpfe zur Verfügung.
  • Ist ein Zentrierbohrkopf wirklich eine gute Werkzeuglösung? Es gibt verschiedene, preisgünstige doppelseitige Standard-Kombinations-Zentrierbohrer und Senkbohrer aus HSS.
    Im Vergleich zu den oben genannten HSS Kombinations- und Senkbohrern, ermöglicht der Zentrierbohrkopf viel längere Standzeiten. Die Fräsköpfe arbeiten mit hohen Schnittparametern und erhöhen somit die Produktivität. Wir empfehlen deshalb, zur Entscheidungsfindung die aktuellen Fertigungskosten und alle relevanten Faktoren zu analysieren.
  • Wie ist die Präzision der Fräsköpfe?
    Der nominelle Durchmesser der Schaftfräsköpfe mit regulärer Präzision hat folgende Toleranzklassen: E8 für mehrschneidige Fräsköpfe aus Rohlingen hergestellt, H9 für die wirtschaftliche Ausführung. Präzisionsfräsköpfe zum Schlicht-Profilfräsen sind mit Toleranzklasse H7 und die Fräsköpfe zum Fräsen von Aluminium mit Toleranzklasse H6 gefertigt. Die Durchmessertoleranz für den zylindrischen Schnittbereich der Fräsköpfe zum Fasen, Senken und Zentrieren ist H10.
  • Wie ist die Wiederholgenauigkeit der MULTI-MASTER-Fräsköpfe?
    Wie bereits oben erwähnt, ist einer der Vorteile der Plananlage die hohe Wiederholgenauigkeit, welche enge Toleranzen im Verhältnis von der Auskragung des Fräskopfs zur Anlagefläche des Schafts ermöglicht. Bei den meisten VHM-Schaftfräsköpfen ist die Toleranz ±0.01 mm.
  • Bietet ISCAR MULTI-MASTER-Fräsköpfe für die Bearbeitung von gehärtetem Stahl?
    Ja. Diese Fräsköpfe sind aus einer hochfesten und verschleißresistenten Feinstkorn-Schneidstoffsorte gefertigt; Sie verfügen über enge Maßtoleranzen.
  • Welche Schafttypen gibt es und für welche Anwendungen werden Sie eingesetzt?
    Es gibt verschiedene Schaftausführungen: Zylindrisch mit Schaftfreischliff. Der Freischliff kann gerade oder konisch sein.
    Zylindrische Schäfte und Schäfte mit geradem Freischliff vom Typ A laut MULTI-MASTER-Bezeichnungssystem sind für unterschiedliche allgemeine Anwendungen geeignet. Eine verstärkte Ausführung ist ebenso verfügbar, vorwiegend geeignet zum Fräsen von Federnuten oder zum Hochvorschubfräsen (HFM), geeignet für die Klemmung in Weldonschäften.
    Typ B ist eine verstärkte Ausführung mit einem relativ kurzen konischen Freischliff mit einem seitlichen Kegelwinkel von 5°. Er kennzeichnet sich durch eine stabileren Schaft und wird vor allem in der Schwerzerspanung eingesetzt.

    Für Bearbeitungen mit langen Auskraglängen ist Typ D mit seinem langen konischen Freischliff eine gute Option. Hier beträgt der seitliche Kegelwinkel 1° dieser Fräser eignet sich vornehmlich für das Fräsen tiefer Taschen und von Kavitäten, hoher Schultern usw. Er sollte nicht unter hoher Belastung zum Einsatz kommen.
    Für kurze Auskraglängen bietet die MULTI-MASTER-Linie Schäfte mit einer Spannzangenaufnahme. Diese wird direkt in das Spannfutter montiert, anstatt der Spannzange. Steifigkeit und Präzision werden durch diese direkte Montage verbessert und die Gesamtlänge im Verhältnis zur Anlagefläche einer Maschinenspindel reduziert.
    Die MULTI-MASTER-Linie beinhaltet auch lange, zylindrische Schäfte (min. 10xD). Diese sind vor allem für Sonderwerkzeuge vorgesehen, wenn der Schaft zusätzlich bearbeitet werden muss, um spezielle Formen bearbeiten. Diese Nachbearbeitung kann auch vom Kunden selbst durchgeführt werden. Es handelt sich im Prinzip um Rohlinge mit einem inneren T-Gewinde, und für den Fall weiterer Bearbeitungen (Drehen, Außenschleifen usw.) sind sie mit einer Zentrumsbohrung auf der Rückseite ausgestattet
    Die MULTI-MASTER-Linie bietet außerdem eine Auswahl an Verlängerungen und Reduzierungen zur Anbindung an weitere modulare ISCAR- Systeme (z.B. FLEXFIT). 
  • Aus welchem Material sind die Schäfte hergestellt? Wie kann das geeignete Schaftmaterial bestimmt werden?
    Die Schäfte sind aus folgenden Materialien hergestellt: Stahl, Hartmetall und Schwermetall (eine Legierung, mit einem Schwermetall-Anteil von 90 % und mehr).
    Hinsichtlich der Funktionalität ist ein Stahlschaft am vielseitigsten. Aufgrund der enormen Steifigkeit von Hartmetall wird ein Hartmetallschaft in erster Linie zum Schlichten und Vorschlichten sowie für Bearbeitungen mit großer Auskraglänge und zum Fräsen von innenliegenden, umlaufenden Nuten eingesetzt. Bei instabilen Bedingungen kann ein Schwermetallschaft gute Ergebnisse erzielen, aufgrund der Vibrationsstabilität dieses Materials. Schwermetallschäfte empfehlen sich jedoch nur für die Schwerzerspanung.  
  • Eignen sich MULTI-MASTER-Werkzeuge für innere Kühlmittelzufuhr?
    Ja, es gibt Schäfte mit inneren Kühlmittelkanälen.&
  • Können MULTI-MASTER-Schäfte in erhitzte Schrumpfspannfutter und Spannfutter aufgenommen werden?
    Hartmetall- oder Schwermetallschäfte eignen sich für die erhitzte Aufnahmemethode. Es wird nicht empfohlen, Stahlschäfte in erhitzte Schrumpfspannfutter oder Spannfutter zu klemmen.
  • Ist es erforderlich, T-Gewinde zu schmieren, wenn die Fräsköpfe auf einen Schaft montiert werden?
    Nein. Das MULTI-MASTER T-Gewinde ist stets von Schmiermitteln freizuhalten!
  • Are the MULTI-MASTER connection design and thread compatible with other tool brands?
    No. ISCAR’s unique design is patented and other systems that appeared later are not compatible.
  • Does ISCAR provide blank MULTI-MASTER heads that are intended for final forming by the customer?
    The MULTI-MASTER family includes semi-finished uncoated carbide blank heads, designed for manufacturing various special cutting profiles by additional grinding at customer facilities. The blank heads have a T-thread for MULTI-MASTER adaptation and a cylindrical portion intended for grinding by the customer.
  • Does ISCAR provide a key with adjustable tightening torque for MULTI-MASTER heads?
    Yes. The MULTI-MASTER product range includes an assembled key, comprising an adjustable torque handle with a set of interchangeable wrenches and TORX-tipped bits, designed for secure and accurate tightening of MULTI-MASTER heads. This key is an optional product and should be ordered separately.
  • What are the applications for ISCAR's lens- and oval-shape solid carbide endmills and MULTI-MASTER exchangeable heads?
    The lens- and oval-shape solid carbide endmills and MULTI-MASTER exchangeable heads are designed for 5-axis semi-finish and finish milling complex surfaces, especially in aerospace, medical and die & mold industries.
  • What is the maximum rotational velocity for a MULTI-MASTER milling tool?
    A MULTI-MASTER tool is an assembly comprising of a shank and an exchangeable milling head. The maximum rotational velocity values (in rpm) for each shank can be found in ISCAR’s catalogs and guides. To estimate the maximum rotational velocity for an assembly when a specific milling head is attached to a shank, the maximum rpm value (taken from the catalog) should be divided by the number of flutes of the milling head.
    Apart from keeping the maximum rotational velocity restriction, the entire tool assembly (milling head, shank, and adapter/tool holder) must be properly balanced.
  • Which of the MULTI-MASTER milling heads are considered long-flute?
    Usually, these are the heads where the length of a cutting edge is at least half as much as the head diameter.
  • There is a variety of Multi-Master heads MM HCD for chamfering, countersinking, and spot drilling that have different point angles. What is the reason for this variety?
    In the Multi-Master standard product line, heads MM HCD have a point angle of 60°, 80°, 90°, 100° and 120°. Such a variety relates mainly to the requirements of different standards for chamfers and countersinks for fasteners. For example, metric countersunk screws require a 90° countersink, but American National countersunk screws require 80° and aerospace rivets 100°. A typical chamfer features a 45° chamfer angle, although, 30° and 60° chamfers are also common. This multiformity of required generated profiles defines the functional capabilities of the heads and explains their variety.
  • What is the main field of application for the ISCAR MULTI-MASTER exchangeable flat bottom drilling head?
    The application range of these heads is not limited to making relatively short holes with a flat bottom (in-depth of up to 1.2 of the hole diameter). The MULTI-MASTER exchangeable flat bottom drilling head ensures efficient drilling on slanted and curved surfaces, directly on solid material without center- or pre-drilling, making it possible to produce half holes, counterboring and spot facing.
  • Is it necessary to reduce the feed rate when drilling slanted surfaces with the MULTI-MASTER exchangeable flat bottom drilling head?
    Yes. When drilling slanted surfaces, the feed rate should be adjusted according to the angle of a surface inclination as recommended in the corresponding ISCAR guides. It can be roughly estimated that the feed reduction is 30-50% of a common value, depending on the angle of inclination.
  • Does ISCAR produce MULTI-MASTER tools for direct mounting onto a machine spindle?
    Yes, ISCAR produces MULTI-MASTER tools with tapered shanks for mounting in spindles with various adaptations. For example: 7:24 taper (DIN 69871), HSK taper (DIN 69893), polygonal taper (ISO 26623-1) etc.
    Hochvorschubfräser
  • Welche ISCAR-Fräswerkzeuge wurden zum Hochvorschubfräsen entwickelt?
    ISCARs Linie für Hochvorschubfräser umfasst Wendeplattenfräser, modulare Multi-Master-Fräswerkzeuge und VHM-Fräswerkzeuge.
  • Für welche Fräsbearbeitungen können Hochvorschubfräser am effektivsten eingesetzt werden?
    Am effektivsten können Hochvorschubfräser zum Schruppen planer Flächen, Taschen und Kavitäten eingesetzt werden.
  • What is the meaning of the “Triple F” or "FFF" that is often mentioned in ISCAR technical editions and presentations?
    "FFF" refers to fast feed face milling or fast feed facing. Rough milling planes is one of most the efficient and widespread applications for FF cutters. The operation usually relates to face milling, so the FFF acronym refers usually to fast feed face milling. FFF can also mean fast feed facing, as milling plane operations are often known as facing.
  • Hochvorschubfräsen wird als hoch effiziente Bearbeitung mit hohen Zeitspanvolumina bei der Bearbeitung von Stahl oder Gusseisen bezeichnet. Können Hochvorschubfräser auch für schwer zerspanbare Werkstückstoffe wie Titan oder hoch hitzebeständige Legierungen eingesetzt werden?
    Ja, Hochvorschubfräser können auch für die Bearbeitung von Edelstahl, Titan und hoch hitzebeständigen Legierungen eingesetzt werden. Vorschubfräser können für die Bearbeitung schwer zerspanbarer Werkstückstoffe eingesetzt werden. In diesem Anwendungsfall werden im Gegensatz zur Stahl- oder Gussbearbeitung deutlich positivere Schneidengeometrien eingesetzt. Der Vorschub pro Zahn ist dadurch geringer. Die Produktivität ist jedoch immer noch deutlich höher als beim Einsatz von Standard-Plan- und Eckfrässystemen.
  • Was versteht man unter MF-Werkzeugen?
    MF bedeutet “Moderate Feed”. Diese Fräswerkzeuge sind schneller und dynamischer als herkömmliche Standardfräswerkzeuge mit 45° Anstellwinkel. MF-Fräser eignen sich hervorragend für die Bearbeitung von Edelstählen sowie zur Steigerung der Produktivität aus weniger dynamischen Fräs- und Drehfräsmaschinen.
  • The LOGIQ campaign introduced new families of indexable FF milling cutters with a diameter range typically covered by solid carbide endmills. Can these new cutters successfully compete with the solid carbide design concept?
    Yes. The design of the cutters ensures a multi-teeth tool configuration. Let’s consider the NAN3FEED mill family as an example. They have 2 and 3 teeth for nominal diameters 8 and 10 mm (.315 and .394”) correspondingly. In a cutter carrying replaceable inserts, only the insert - a small part of the cutter - is made from cemented carbide. This means that the indexable design consumes far less of this expensive material than a solid carbide solution. The NAN3FEED insert with its 3 cutting edges ensures triple edge indexing, which is also cost-effectiveness. As the insert is small, it is placed simply in a pocket via a key with a magnetic boss on the key handle. The economical efficiency and ease of use make the family competitive with solid carbide tools.
  • Are fast feed cutters recommended for milling operations in turning or multi-task machines?
    Yes. In general, these are small to medium diameter cutters and the turning operation is fast. The use of fast feed cutters results in improving the milling operation, reducing the machining time and minimizing damages to the machine head. MULTI-MASTER is an excellent option for turn-milling machines.
  • What is a radius for programming in fast feed milling cutters?
    In CNC programming, a fast feed cutter is often specified as a 90°mill with a corner radius. This imaginary radius, which is called as "radius for programming", is an important data because it defines the maximal thickness of a cusp (scallop) and deviations from the theoretical profile of a surface that is generated by such a specification.
  • ISCAR has a wide range of high feed (fast feed) milling cutters. How can I select an optimal milling cutter for my application?
    Basic information about ISCAR's high feed (fast feed) milling cutters, and recommendations for their selection, can be found in the Fast Feed Milling Quick Tool Selector Guide; available in both electronic (ISCAR website) and printed versions. If the question refers to a specific application with known details, an optimal solution can be found in the ITA (Iscar Tool Advisor) online software application.
    High Speed Machining (HSM)
  • What does the term "high speed machining" mean?
    Often HSM is emphasized as "a high-efficiency method of modern machining with high spindle and feed speed". High speed machining may refer to:
    • High cutting speed machining
    • High spindle speed machining
    • High feed speed machining
    These three speeds are interrelated. Increasing spindle speed automatically results in increasing feed speed as well, and likewise higher cutting speed requires a correspondingly higher spindle speed. As cutting speed varies in direct proportion to the diameter of a rotating tool, for tools of different diameters, different spindle speeds are required to ensure that the cutting speed is identical. A cutting speed is also a function of several factors, where a workpiece material and a cutting tool material are dominant. Depending on the cutting tool material, the recommended cutting speed for the same workpiece material may be quite different. A good example of this is machining nickel-base high temperature alloys by cemented carbide and whisker ceramic tools. At the same time, in machining aluminum, for instance, "normal" cutting speeds are significantly higher than in machining the high-temperature alloys.
    The term "high speed machining" usually relates to high speed milling, which is a milling method that is characterized by shallow, light cuts combined with high spindle speed.
  • Is the cutting speed extremely high in high speed machining?
    Not always. Let's examine one example. Assume that we machine a material with the use of a ball nose milling cutter of 4 mm in diameter while the depth of cut is 0.1 mm. The effective diameter in this case will be 1.25 mm. If the cutting speed as 60 m/min is required, the cutter should rotate at 15280 rpm. If the cutting speed will be 100 m/min, the rotational speed of the cutter will increase up to 25465 rpm! High speed machining does not automatically mean that the cutting speed is high.
  • Is it correct that a machine tool intended for high speed machining must have a high speed main drive?
    Yes, but not only. As rotational speeds and feed speeds are interrelated, the machine tool should also feature a high speed feed drive. Furthermore, the machine tool must have appropriate fast control systems, high rigidity and many other design features, to make it suitable for high speed machining.
  • Can high speed machining be applied to machining hard steel?
    Yes. In machining hard steel – which are difficult-to-cut materials – intensive heat generation and vibration take place. This is a source of poor tool life, reduction of accuracy, loss of stability etc. that makes machining operations unpredictable. High speed machining with its shallow cuts produces much lower cutting forces and heat, and therefore can solve these issues.
  • Why is high speed machining becoming more and more popular in rough machining operations?
    Technological advances, especially in producing workpieces that are half-finished products, place special emphasis on high speed machining. Methods such as precise casting, metal injection molding, and 3D printing ensure that the production of workpieces is very close to the final shape of a part. As a result, the need to remove a high volume of materials by means of traditional rough cutting decreases. As high speed machining features low stock removal, it offers a precise method of producing workpieces.
  • How does trochoidal milling relate to high speed machining?
    In trochoidal milling, a fast-rotating tool moves along an arc and “slices” a thin but wide layer of material. This milling method features small widths (or radial depths) of cut and high speed rotation of the tool and may be considered as a high speed machining technique.
  • Does ISCAR provide information about maximum rotational velocities for milling cutters?
    Yes. This information can be found in catalogues, guides, leaflets and other technical documentations. In many cases, the maximum rotational velocity permitted for indexable milling cutters is marked directly on a cutter body.
  • Should a high-speed machining (HSM) tool and toolholder assembly be balanced?
    The answer is yes. Typically, a tool is mounted on a toolholder and the toolholder is fitted into the spindle of a high-speed machine.
    In high-speed milling, the dynamic characteristics of a tool cannot be separated from a toolholder and particular focus must be given to the assembly of the tool and toolholder.
  • What is peel milling?
    Generally, peel milling relates to a milling method based on the combination of a large depth of cut with a small radial engagement of a milling cutter. Trochoidal milling can be considered a particular part of the peel milling process, and both peel milling and trochoidal milling are often used alike.
    Nut- und Scheibenfräser
  • Welche Werkzeuge setzt man zum Schlitzfräsen ein?
    Unterschiedliche Fräsertypen. Scheibenfräser, Schaftfräser, Wendelschaftfräser (lange Schneiden) und Planfräser eignen sich zum Schlitz- und Nutenfräsen. Allerdings sind nur 3-seitig schneidende Scheibenfräser speziell für die Fertigung von Schlitzen und Nuten ausgelegt. Die anderen Fräser sind in erster Linie für unterschiedliche Fräsbearbeitungen geeignet.
  • Worin unterscheiden sich “Schlitz” und“Nut”?
    Die Begriffe “Schlitz” und“Nut” sind oftmals Synonyme. Ein “Schlitz” ist jedoch in der Regel schmal sowie vergleichsweise lang und offen (mindestens an einem Ende); Eine “Nut”, ist in der Regel umlaufend oder ein helikaler Kanal.
  • Slot milling tools are often referenced as slotting tools. Is this correct?
    The word “slotting”, commonly known as “slot milling”, is widespread in shop talk but the two actions are not identical or interchangeable. Slotting refers specifically to a stage in planning or shaping – a machining process where a single-point cutting tool moves linearly and piston wise, and a workpiece is fixed or moves only linearly concurrent with the tool.
  • Ein Schlitzfräser ist stirnseitig und am Umfang mit Wendeschneidplatten bestückt, für die simultane Bearbeitung von drei Flächen: Nutgrund und beide seitliche Schultern (3-seitig schneidend)
    Welches sind typische Schlitzfräsertypen?
  • Welches sind typische Schlitzfräsertypen?
    Schlitzfräser unterscheiden sich in der Aufnahmeart. Entweder verfügen sie über einen Aufnahmedorn bzw. eine Schaftaufnahme oder es handelt sich um auswechselbare Fräsköpfe für modulare Fräswerkzeugsysteme.
  • Welches ist ISCARs Werkzeugprogramm für Schlitzfräser?
    ISCAR hat Schlitzfräser für folgende Bereiche entwickelt:
  • Wann bezeichnet man eine Nut als eng?
    Die Bezeichnung “ enge Nut” definiert in der Regel eine tiefe Nut von geringer Breite. Eine etwas rigorosere, aber empirische Regel besagt, dass eine enge Nut eine Nutbreite unter 5 mm und eine Tiefe von mindestens 2.5xD aufweist.
  • What type of milling does ISCAR recommend for these types of cutters?
    Down milling is normally recommended, where chip thickness is formed from thick to thin.
  • What is the difference between indexable slotting cutters and slitting cutters?
    Originally, slotting cutters were intended for milling slots and grooves while slitting cutters were used for slitting or cutting-off. Each type of cutters featured different accuracy requirements, and slitting cutters were less precise. However, technological progress has significantly leveled out differences between slotting and slitting cutters in indexable milling.
  • Why are the terms "axial depth of cut" and "radial depth of cut" very common in milling slots and grooves?
    In milling, a depth of cut is usually measured along the axis of a cutter, axially, while a width of cut – radially, in the direction perpendicular to the axis. Hence the depth of cut and the width of cut also can refer to as "axial depth of cut" and "radial depth of cut" accordingly.
    However, this generally accepted approach may sometimes lead to confusion in the case of disc slot milling cutters. The axial depth of cut here is equal to the width of cutter teeth, and it defines the width of a milled slot. The radial depth of cut in the such a case reflects the slot depth.
    Therefore, in machining disc milling cutters, using the terms "axial depth of cut" and "radial depth of cut" helps in preventing possible misunderstandings.
  • Can an ISCAR SD-SP solid carbide slot milling head be mounted on a MULTI-MASTER shank?
    No, interchangeable SD-SP slot milling heads are not suitable for direct mounting on MULTI-MASTER shanks. However, mounting is possible when using an SD CAB one-end T-threaded and one-end splined adapter.
    Wendelschaftfräser
  • Warum heißen diese Werkzeuge “Wendelschaftfräser”?
    Die Gesamtschneidenlänge eines Wendelschaftfräsers besteht insgesamt aus mehreren Fräswendeschneidplatten, die aufeinanderfolgend in einem Wendel im Fräser montiert sind. Im Vergleich zu einem regulären Wendeplattenfräser, dessen Schnitttiefe durch die Schneidkantenlänge begrenzt ist, ist die Schnitttiefe von Wendelschaftfräsern aufgrund dieser WSP-Bestückung wesentlich größer.
  • Gibt es noch andere Bezeichnungen außer Wendelschaftfräser?
    Für Wendelschaftfräser verwendet man manchmal umgangssprachlich die Bezeichnungen "Walzenstirnfräser" oder "Igelfräser".
  • Welches sind die Hauptanwendungen für Wendelschaftfräser?
    Wendelschaftfräser werden zum Schruppfräsen von hohen Schultern, tiefen Nuten oder Kavitäten eingesetzt. Die häufigste Anwendung ist das Besäumen mit einer Schnittbreite kleiner 30%.
  • Kann man Wendelschaftfräser auch zum Vorschlichten einsetzen?
    Ja. ISCARs HELITANG FIN LNK-Fräser mit tangential geklemmten, umfangsgeschliffenen Wendeschneidplatten wurden speziell für das Vorschlichten und zum Schlichten entwickelt.
  • Warum verfügen die meisten Fräswendeschneidplatten für Wendelschaftfräser über einen Spanteiler?
    Wendelschaftfräser sind unter hoher Beanspruchung im Einsatz. Die nachfolgend aufgeführten Faktoren verbessern die Zerspanleistung. Deshalb ist ein Spanteiler meist Teil der Schneidengeometrie eines Wendelschaftfräsers: Durch Spanteiler werden breite Späne in kleine Stücke geteilt, was den Spanfluss und die Spanevakuierung verbesssert. Die Spanteilergeometrie verbessert die Vibrationsdämpfung eines Fräsers. In den meisten Fällen reduziert ein Spanteiler die Schnittkräfte und die Leistungsaufnahme sowie die Wärmeentwicklung während des Fräsprozesses. Durch die kleinen Späne wird eine Schruppoperation tiefer Kavitäten enorm verbessert und die Standzeit verlängert.
  • Welche Werkzeugkonfigurationen gibt es bei ISCARs Wendelschaftfräsern?
    ISCARs Wendelschaft-Standardprogramm bietet: Aufsteckfräser Fräser mit Zylinderschaft oder Weldonschaft Fräser mit Steilkegelaufnahme (SK) oder Hohlschaftkegel (HSK) CAMFIX Hohlschaftkegel mit Polygonanschluss oder FLEXFIT-Schnittstelle (M-Gewinde)
  • Verfügen ISCARs Wendelschaftfräser über eine innere Kühlmittelzufuhr?
    Die meisten Wendelschaftfräser von ISCAR verfügen über eine innere Kühlmittelzufuhr durch den Fräskörper.
  • Empfiehlt ISCAR den Einsatz von Wendelschaftfräsern auch für die Bearbeitung von Titan?
    Ja. Beim Fräsen von Titan muss in der Regel viel Material abgetragen werden. Es handelt sich hierbei um Zerspanprozesse mit einer signifikanten Buy-To-Fly-Ratio. Wendelschaftfräser bieten in diesem Bereich einen großen Leistungsvorteil. Die Zykluszeiten werden durch den Einsatz dieser Werkzeuge deutlich verringert.
  • Why are some extended flute cutters defined as ‘fully effective’?
    The design of the cutters known as ‘fully effective’ features the inserts interlinked and overlapping, resulting in a continuous flute. Many other cutters are “half effective”, where the inserts are placed alternately and 2 flutes are necessary to cover the area that the fully effective cutters can cover with only one flute.
    Fräswerkzeuge für die Zahnradbearbeitung
  • Bietet ISCAR Werkzeuge für die Bearbeitung von Zahnrädern und Verzahnungen? BITTE ERGÄNZEN / DANKE
    ISCARs aktuelles Werkzeugprogramm für die Bearbeitung von Zahnrädern und Verzahnungen bietet 3 Fräsertypen: Fräser mit Wendeschneidplatten Fräser mit auswechselbaren Fräsköpfen, basierend auf dem T-SLOT-Konzept Fräser mit auswechselbaren Fräsköpfen und MULTI-MASTER-Schnittstelle
  • Für welches Verfahren der Zahnradbearbeitung sind ISCARs Fräswerkzeuge ausgelegt?
    Aktuell produziert ISCAR für die Zahnradbearbeitung generate durch Formfräsen.
  • Was bedeutet "Formfräsen" im Zusammenhang mit Zahnradbearbeitung?
    Formfräsen ist eines der Verfahren zur Herstellung von Zahnprofilen. Beim Formfräsen bearbeitet der Fräser mit einem zahnradähnlichen Profil jeden Zahn einzeln; and a workpiece is indexed through a pitch after generating one space. BITTE ERGÄNZEN / DANKE
  • Gibt es außer Formfräsen andere Verfahren zur Erzeugung von Zahnprofilen?
    Die prinzipielle Methode (abgesehen vom Formfräsen) ist gear hobbing, which uses a hob, a cutter with a set of teeth along a helix that mills the workpiece and that rotates together with the workpiece in a similar way to a worm-wheel drive; gear shaping with the use of a gear-shaping cutter, a rotating tool that visually resembles a mill; and by power skiving - a technique that combines gear milling and gear shaping. Es gibt außerdem noch weitere Methoden zur Erzeugung von Zahnprofilen, wie z. B. Räumen, Schleifen, Walzen. BITTE ERGÄNZEN / DANKE
  • Ist die Erzeugung des Zahnprofils die letzte Bearbeitung in einem Zahnradbearbeitungsprozess?
    Die Erzeugung des Zahnprofils ist im allgemeinen nicht der letzte Arbeitsgang. Es müssen Grate entfernt werden, und die scharfen Kanten der Zähne müssen verrundet oder angefast werden. Das Verrunden oder Anfasen ist erforderlich, to avoid quenching gears with sharp edges, was Mikroausbrüche verursachen und die Lebensdauer des Zahnrads reduzieren kann. Beim Fräsen von Zähnen sind lediglich Parameter möglich, die in einer geringen Zahnradpräzision resultieren. Da die Herstellung präziser Zahnräder eine höhere Präzision und Oberflächengüte verlangt, werden auch andere Verfahren wie Zahnrad-Schaben, Verzahnungs-Schleifen,Verzahnungs-Honen usw. angewendet. BITTE ERGÄNZEN / DANKE
  • In der Regel wird Formfräsen in der Zahnradbearbeitung nur bei kleinen Losgrößen eingesetzt. Warum beinhaltet das Standardprogramm Herstellern, einschließlich ISCAR, Formfräser für die Zahnradbearbeitung?
    In der Produktion von Losgrößen erfolgt die Fräsbearbeitung von Zahnrädern auf speziellen Wälzfräsmaschinen, da die Produktivität dabei wesentlich höher ist. Innovative Multifunktionsmaschinen erweitern jedoch den Anwendungsbereich. Technologische Prozesse, die für diese Maschinen entwickelt wurden, orientieren sich an der Maximierung des Bearbeitungsprozesses durch One Setup-Fertigung. Daraus ergibt sich ein neuer Weg für eine präzisere und produktivere Fertigung. Das Fräsen von Zahnrädern und Verzahnungen ist prädestiniert für diese neuen Maschinen. Diese neuen Maschinen benötigen entsprechende Werkzeug, und Hersteller von Werkzeugen für allgemeine Bearbeitungen erkennen deshalb die Rolle von Fräsern für die Zahnradbearbeitung innerhalb ihres Standardprogramms.
  • What is the module in gearing? BITTE ERGÄNZEN / DANKE
    The module (modulus) is one of the main basic parameters of a gear in metric system. Die Messung erfolgt in mm. The module m eines Zahnrads mit Steigungsdurchmesser d und Anzahl der Zähne z stellt das Verhältnis des Steigungsdurchmessers zur Anzahl der Zähne(d/z) dar. BITTE ERGÄNZEN / DANKE
  • Verwendet das Zollsystem bei Zahnrädern ebenfalls the module als Basisparameter? BITTE ERGÄNZEN / DANKE
    Das Zollsystem benutzt einen weiteren Basisparameter: die diametrale Steigung. Dies ist die Anzahl der Zähne des Zahnrads pro 1 Zoll des Steigungsdurchmessers. Hat ein Zahnrad N Zähne und it einen Steigungsdurchmesser D (in Zoll), berechnet sich die diametrale Steigung P als N/D. Bei der Bestimmung von Zahnrädern in Zolleinheiten wird manchmal das sogenannte englische Modul angewendet. Im Prinzip bedeutet dieses Modul dasselbe wie das metrische System, d. h. das Verhältnis des Steigungsdurchmessers zur Anzahl der Zähne; Der Steigungsdurchmesser sollte jedoch in Zoll abgenommen werden, nicht in mm, wie dies im metrischen System der Fall ist.
  • Wie definiert sich der Unterschied zwischen Zahnrad und Verzahnung?
    Zahnräder ion einem Rädergetriebe dienen zur Übertragung einer Drehbewegung zwischen 2 Wellen (wobei die Achsen der Wellen nicht immer parallel verlaufen) und, in den meisten Fällen, ist diese Übertragung komnbiniert mit wechselndem Drehmoment und wechselnder Drehzahl. Die Zahnräder werden auch zur Umwandlung einer Rotationsbewegung in eine lineare Bewegung eingesetzt. A splined joint is a demounted connection of two parts to transfer the torque from one to another. Das Drehmoment ist hier unverändert. BITTE ERGÄNZEN / DANKE ( HILFE HILFE ;-) )
  • Was ist der Unterschied zwischen Verzahnung und Kerbverzahnung? IST DAS KORREKT??
    In diesem Zusammenhang stellen Kerbverzahnungen einen bestimmten Verzahnungstyp dar. Kerbverzahnung haben einen V-förmigen Abstand zwischen den Zähnen. Man findet sie in der Regel in kleinen Verbindungen.
    Einstechen
  • Was ist die erste Wahl für das Einstechen in der Schwerzerspanung?
    Zum Einstechen nur den DOVEIQGRIP TIGER-Schneideinsatz in den Schneidenbreiten 10 - 20 verwenden. Zum Stechdrehen verwendet man den Schneideinsatz SUMO-GRIP TAGB, verfügbar in den Schneidenbreiten 6 - 14 mm.
  • Welcher Spanformer eignet sich am besten für zähe Werkstückstoffe?
    Verwenden Sie den N-Spanformer. Dieser ist verfügbar in den Breiten 3 - 8 mm für GIMN-Schneideinsätze zur Außenbearbeitung sowie in den Breiten 2 -5 mm für GEMI/GINI-Schneideinsätze zur Innenbearbeitung.
  • Welche Schneidstoffsorten werden für die Bearbietung von ISO-M- / ISO-P-Werkstückstoffen empfohlen?
    Die erste Wahl für viele Anwendungen ist IC808; Wird eine härtere, verschleißfestere Sorte benötigt, verwendet man IC807; Benötigt man eine zähere, Sorte (unterbrochene Schnitte), empfehlen wir IC830.
  • Welche Schneidstoffsorte eignet sich am besten für die Bearbeitung von ISO-S-Werkstückstoffen (hoch hitzebeständige Legierungen)?
    Erste Wahl ist IC806 für die Bearbeitung hoch hitzebeständiger Legierungen. Für härtere ISO-S-Werkstückstoffe (HRC35) verwendet man IC804.
  • Welche Werkzeughalter zum Einstechen setzt man auf Langdrehautomaten ein?
    Verwenden Sie GEHSR/GHSR-Halter mit Klemmmechanismus von der Seite, was für den Einsatz auf Langdrehautomaten im Gegensatz zu herkömmlicher Klemmung von oben vorteilhaft ist.
  • Welche Schneidstoffsorten / Geometrien werden zum Einstechen / Stechdrehen von Gusseisen empfohlen?
    Verwenden Sie die Schneideinsätze GIPA/GIDA/FSPA. Diese verfügen über eine sehr scharfe, positive Schneidkante sowie eine geschliffene Spanfläche, in Kombination mit den Schneidstoffsorten IC20 oder ID5 PKD; Für Stechbreiten 6 – 8 mm sind runde FSPA-Schneideinsätze die beste Wahl, aufgrund ihres speziellen Klemmsystems.
  • Welche Schneidstoffsorten /Geometrien werden zum Einstechen / Stechdrehen von Aluminium empfohlen?
    &amp;lt;ul&amp;gt; &amp;lt;li&amp;gt;Verwenden Sie die Schneideinsätze GIPA/GIDA/FSPA. Diese verfügen über eine sehr scharfe, positive Schneidkante sowie eine geschliffene Spanfläche, in Kombination mit den Schneidstoffsorten IC20 oder ID5 PCD&amp;lt;/li&amp;gt; &amp;lt;li&amp;gt;Für Stechbreiten 6 – 8 mm sind runde FSPA-Schneideinsätze die beste Wahl, aufgrund Ihres speziellen Klemmsystems&amp;lt;/li&amp;gt; &amp;lt;/ul&amp;gt;
  • Welche Werkzeuge / Schneideinsätze eignen sich am besten zum Inneneinstechen in Bohrungen mit kleinem Durchmesser?
    Bohrungsdurchmesser 2 – 10 mm: Verwenden Sie PICCO-Schneideinsätze in PICCO ACE-Werkzeugen; Bohrungsdurchmesser: 8 – 20; Verwenden Sie GIQR-Schneideinsätze in MGCH-Werkzeugen; Bohrungsdurchmesser 12 – 25 mm: Verwenden Sie GEMI/GEPI-Schneideinsätze in GEHIR-Werkzeugen.
  • Wie können Vibrationen reduziert werden?
    Verwenden Sie die kleinstmögliche Auskraglänge; Bearbeiten Sie mit konstanter Drehzahl; Reduzieren Sie die Drehzahl falls nötig; Reduzieren Sie die Schneidenbreite, um die Schnittkraft zu reduzieren. Für die Breiten 6 und 8 mm verwenden Sie WHISPERLINE Anti-Vibrations-Schneidenträger.
  • In welchen Fällen werden JETCUT-Werkzeuge mit zielgerichteter Kühlmittelzuführung empfohlen?
    JETCUT-Werkzeuge eignen sich für alle Kühlmitteldrücke (10 – 340 bar) und alle Anwendungen, da sie das Kühlmittel effizient direkt zur Schneidkante befördern. Dies führt zu längeren Standzeiten und besserer Spankontrolle.
  • Does ISCAR provide the PENTA star-type blank inserts for final shaping?
    Yes. ISCAR's grooving line also consists of blank inserts to ensure customization for producing tailor-made profiles.
    Abstechen
  • Was ist ISCARs erste Wahl in punkto Werkzeugen zum ABSTECHEN?
    • Für allgemeine Anwendungen bis zum Bauteildurchmesser 38mm verwenden Sie doppelseitige DO-GRIP-Schneideinsätze
    • Über 38mm: Verwenden Sie einseitige TANG GRIP-Schneideinsätze–
    • Bis zu Durchmesser 40mm: Verwenden Sie PENTA IQ , dies ist ein äußerst wirtschaftlicher Schneideinsatz mit 5 Schneidkanten
  • Welche Schneidstoffsorte ist die beste Option für die Bearbeitung von Stahl(ISO P)?
    • C830
  • Welche Schneidengeometrie / welcher Spanformer ist erste Wahl für die Bearbeitung von Stahl? 
    • Verwenden Sie die "C" Geometrie, z. B. DGN 3102C
    Welches ist die am besten geeignete Schneidengeometrie / der am besten geeignete Spanformer für die Bearbeitung von rostbeständigem Stahl?
    • Verwenden Sie die "LF" Geometrie, z. B. DGN 3102LF
  • Welche Werkzeuge und Schneideinsätze empfehlen Sie für die Bearbeitung von Miniaturbauteilen?
    • Erste Wahl ist ISCAR DO-GRIP (doppelseitige Schneideinsätze) mit positiver Schneidengeometrie, z. B. DGN 3102J & DGN 3000P
      * Verwenden Sie Werkzeuge mit kurzen Abmessungen, z. B. DGTR 12B-1.4D24SH
    • Zweite Wahl ist ISCAR PENTA CUT, ein wirtschaftlicher Schneideinsatz mit 5 Schneidkanten, z. B. :
      * PENTA 24N200J020 IC1008 (Schneideinsatz)
      * PCHR 12-24 (Werkzeug)
  • Welches Werkzeug eignet sich am besten für Bearbeitungen in der Schwerzerspanung?
    • Verwenden Sie ISCAR TANG GRIP (einseitig) Schneideinsätze. Wählen sie die Breite gemäß dem Bauteildurchmesser
    • Für Bearbeitungen in der Schwerzerspanung bietet ISCAR Schneidenbreiten 5-12.7mm
    • IC830 ist die empfohlene Schneidstoffsorte
    • Empfohlene/r Schneidengeometrie / Spanformer ist "C"
  • Wie reduziert man die Gratbildung am Bauteil?
    • Verwenden Sie R oder L Schneideinsätze - diese Schneideinsätze haben einen Anstellwinkel, so dass die Schneidkante nicht gerade ist
    • Verwenden Sie außerdem einen positiven Spanwinkel, z. B. : DGR -3102J-6D (6D =6 Grad Anstellwinkel)
    • beim letzten Einstich wird empfohlen, den Vorschub um 50% zu reduzieren
  • Wie erreicht man eine längere Standzeit der Schneideinsätze?
    Analysieren Sie die Fehlerursache und wählen Sie entsprechend eine Schneidstoffsorte:
    Verschleiß: Verwenden Sie eine härtere Schneidstoffsorte, z. B. IC808 oder 807
    Bruch: Verwenden Sie eine zähere Schneidstoffsorte wie z. B. IC830
  • Welcher Schneideinsatz eignet sich am besten für   unterbrochenen Schniשt?
    Verwenden Sie einen negativen Spanwinkel, den "C"-Spanformer sowie die Schneidstoffsorte IC830.
  • Wie verbessert man die Spankontrolle, wenn die Späne zu lang sind?
    • Wählen Sie den geeigneten Spanformer sowie die korrekten Schnittparameter, um einen guten Spanbruch zu erzeugen
    • Wählen Sie einen aggressiveren Spanformer, z. B. UA oder UT
    • Hinweise zur Vorschuberhöhung finden Sie im ISCAR User Guide
  • Wie verbessert man die Geradheit und Oberflächengüte des zu bearbeitenden Bauteils?
    • Verwenden Sie einen neutralen Schneideinsatz sowie ein stabiles Werkzeug mit der kleinst möglichen Auskraglänge
    • Passen Sie die Schnittparameter an
  • Can a JETCROWN tool block carry different square adapters?
    Yes. A JETCROWN tool block is intended for mounting square adapters of different dimensions. An adapter is clamped on the block by use of a crown which is a specially designed part of the JETCROWN tool assembly that ensures pinpointed high-pressure coolant supply. Important to note that for each insert width a separate crown is required. Refer to ISCAR's catalogues and technical guides for more data.
  • Why has ISCAR introduced new tool blocks with a reinforced rib on the opposite side of the block in addition to the existing line of tool blocks in the LOGIQ-F-GRIP line?
    There are cases where the reinforced rib interferes and prevents clamping the ISCAR LOGIQ-F-GRIP block on typical turret positions. Such a problem can be solved by using the blocks which have the rib on the opposite side. In these cases, ISCAR has added blocks with another rib location to the LOGIQ-F-GRIP product line.
    Drilling
  • Welche Durchflussrate wird für SUMOCHAM empfohlen?
    Dies ist abhängig vom Durchmesser. Beispielsweise ist die Mindestdurchflussrate für 6 mm SUMOCHAM 5 l/min. Für 20 mm beträgt die Mindestdurchflussrate 18 l/min. Für 20 mm beträgt die Mindestdurchflussrate 18 l/min. Weitere Informationen finden Sie im SUMOCHAM User Guide in unserem Gesamtkatalog für Rotierende Werkzeuge auf Seite 491.
  • Welcher Kühlmitteldruck wird für SUMOCHAM empfohlen?
    Dies hängt vom Durchmesser und von der Werkzeuglänge ab. Beispielsweise beträgt der Mindest-Kühlmitteldruck für 6 mm SUMOCHAM 12 bar auf 8xD. Für 25 mm SUMOCHAM auf 12xD beträgt der erforderliche Mindest-Kühlmitteldruck 4.5 bar. Weitere Informationen finden Sie im SUMOCHAM User Guide in unserem Gesamtkatalog für Rotierende Werkzeuge auf Seite 491.
  • Welche Werkstück-Geradheit kann mit der SUMOCHAM-Linie erzeugt werden?
    In einer stabilen Aufspannung kann die Abweichung von 0.03 mm bis 0.05 mm pro 100 mm Bohrtiefe betragen. Wichtig: Die erzeugten Ergebnisse können variieren, abhängig von Maschine, Klemmung, Werkzeugaufnahme usw.
  • Wie ist der korrekte Tiefbohrzyklus bei Verwendung einer Pilotbohrung und darauffolgendem Werkzeug?
    Um Fehler zu vermeiden, sollte die Pilotbohrung mit derselben Geometrie durchgeführt werden, die man für die nachfolgende Tiefbohroperation vorgesehen hat. Ausführliche Erläuterungen hierzu finden Sie in unserem Gesamtkatalog für Rotierende Werkzeuge auf Seite 492.
  • Kann man mit SUMOCHAM auch eine Aufbohroperation durchführen? 
    Nein, die SUMOCHAM-Linie wurde nicht für Aufbohroperationen entwickelt. Dies könnte zur Beschädigung von Werkzeug und Wechselköpfen führen.
  • Welche Geometrie wird für die Bearbeitung von Titan empfohlen? 
    Erste Wahl ist ICP/ICM, zweite Wahl ist ICG.
  • Kann man SUMOCHAM-Bohrköpfe nachschleifen? 
    Ja, die Geometrien ICP/ICK/ICM/ICN/ICH und FCP können je nach Durchmesser bis zu 3 mal nachgeschliffen werden. Detaillierte Erläuterungen hierzu finden Sie in unserem Gesamtkatalog für Rotierende Werkzeuge auf den Seiten 502-504.  Hinweis: Die Geometrie HCP kann nur in unserem Stammhaus in Israel nachgeschliffen werden. 
  • Was ist der maximal zulässige Rundlauffehler für SUMOCHAM? 
    Um eine bestmögliche Werkzeugleistung und Standzeit zu erzielen, sollte der radiale und axiale Rundlauffehler 0.02 mm nicht übersteigen. Einen ausführlichen User Guide finden Sie in unserem Gesamtkatalog für Rotierende Werkzeuge ab Seite 490. 
  • Kann man SUMOCHAM für unterbrochene Schnitte einsetzen? 
    SUMOCHAM eignet sich nicht für unterbrochene Schnitte. In diesem Fall kann die Klemmkraft des Werkzeugs zu schwach sein, so dass sich die Wendeschneidplatten aus dem Plattensitz lösen. 
  • Welche Werkzeuglösung empfiehlt ISCAR für die Bearbeitung harter Werkstückstoffe? 
    Für die Bearbeitung harter Werkstückstoffe empfehlen wir die VHM-Bohrer SCD-AH in der Schneidstoffsorte IC903 oder eine Semistandardoption aus der SUMOCHAM-Linie, die ICH-Bohrköpfe.  
  • Welcher Aufnahmetyp wird empfohlen? 
    Grundsätzlich wird die Aufnahme empfohlen, die am besten zum Werkzeugschaft passt. Wenn der Schaft rund ist, eignet sich am besten eine HYDRO-Aufnahme. Weitere Informationen finden Sie in unserem Gesamtkatalog für Rotierende Werkzeuge ab Seite 829. 
  • In wieweit darf man eine mit SUMOCHAM Bohrköpfen hergestellte Durchgangsbohrung mit dem Bohrkopf überfahren? 
    Der maximale Überstand gemessen von der Flanke des Spitzenwinkels sollte max. 2-3 mm betragen, so kann gewährleistet werden dass das Werkzeug durch die Führungsfasen noch radial geführt wird. 
  • Welche Werkzeuglösung wird für die Bearbeitung von Aluminium empfohlen? 
    Dies hängt von der Anwendung ab. Die SUMOCHAM-Linie bietet ICN-Wendeschneidplatten, die speziell für das Bohren von Nichteisen-Werkstückstoffen entwickelt wurden. 
  • An welchen Merkmalen kann man erkennen, wann ein SUMOCHAM-Bohrkopf verschlissen ist? 
    Die beste Methode ist, den Bohrkopf mikroskopisch zu vermessen. Weitere Verschleißindikatoren finden Sie in unserem Gesamtkatalog für Rotierende Werkzeuge auf Seite 493. 
  • Which hole is considered as "short" and which as "deep"?
    Commonly used terms “short” and “deep” holes do not have a strict definition. It is widely accepted that drilling a hole of diameter d and (10…12)×d or higher in depth relates to deep drilling, while holes having depth up to 5×d, are short.
    In the terminology used by ISCAR, only a drilling depth of 12×d and higher is considered as deep. Consequently, the holes with shallower depths are short.
  • What is a cutting length series of drills?
    The drills vary in their cutting length. In general, tool manufacturers normalize the drills by cutting length series (short, regular, etc.), according to the ratio "cutting length/drill diameter". At ISCAR, drills intended for machining short holes are usually divided into the following length series: short (up to 3×d), long (4×d and 5×d) and extra-long (8×d and 12×d).
  • Why is a center drill referred to as a "countersink" and even as a "spot drill"?
    A center drill is needed for forming a conical hole in workpieces. This hole is used for supporting the workpieces by the centers of machine tools. One of the methods for forming conical holes is countersinking - machining by a specially designed cutter, a countersink. In fact, the center drill performs a combination of two operations simultaneously: drilling and countersinking. Therefore, the center drill is often referenced as a “combined countersink”. Sometimes, a center drill is considered a spot drill; however this specification is not strictly correct. A spot drill only drills but a center drill performs two operations: drilling and countersinking, therefore “spot a hole” and “drill a center hole” are not the same.
  • In center drilling, does a Multi-Master replaceable solid carbide head offer a real alternative to reversible high-speed steel (HSS) drill bits?
    Reversible HSS center drill bits are the most popular tools for center drilling: they are simple, always available for purchase, and feature low prices. The Multi-Master replaceable solid carbide head enables significant increases in cutting speed and feed, resulting in higher productivity and reduced machining costs, especially in cases of machining difficult-to-cut material. In addition, the tool life of the head is much longer. A brief economical calculation will show the preferred alternative for each case.
  • Is a chip-splitting cutting geometry suitable for drills of a relatively small diameter?
    A chip-splitting cutting geometry may be used in drilling tools. There are different drill cutting edge designs with chip splitting grooves, for example the SUMOCHAM ICG heads. Splitting chips into small segments improves chip evacuation and cutting speed. Under the same cutting conditions, a straight-style edge ensures better surface finish. Therefore, chip-splitting geometry is suitable mainly for rough drilling operations.
  • What are the advantages of the concave, pagoda-shape, cutting edges of SUMOCHAMIQ exchangeable drilling heads?
    The shape of the cutting edge substantially enhances the self-centering capability of the drill and enables drilling holes of depths up to 12×d directly into solid material, without pre-drilling a pilot hole. In addition, the HCP geometry facilitates gradual penetration into machined material which reduces the cutting forces, obtaining better hole quality – particularly when the drilling depth is significant.
  • What are the advantages of chamfering rings for drills?
    A chamfering ring is intended for mounting in the body of a standard drill in the desired position according to the drill tip. The ring mounting configures a combined holemaking tool that can perform drilling and chamfering in one operation.
  • What does the abbreviation "BTA" indicate in deep drilling?
    In drilling, BTA stands for "Boring and Trepan Association". It typically relates to the unique design of deep drilling tools, which can be represented by both deep drills and deep drilling heads. These are also commonly referred to as "Single Tube System (abbreviated by STS) deep drilling tools."
  • Is it possible to regrind LOGIQ3CHAM 3 flute exchangeable drill heads directly at the customers' premises?
    Regrinding new geometries of these 3 flute drill heads is complicated and cannot usually be done locally.
  • What are the ISCAR products for deep drilling?
    ISCAR's line of deep drilling tools comprises gundrills and drills for ejector and single tube (STS) systems.
  • Can the SUMOCHAM drills be mounted in FLEXFIT threaded adaptors and tool holders?
    ISCAR produces modular drills combining SUMOCHAM design with a FLEXFIT threaded connection to enable mounting. A wide range of FLEXFIT threaded adaptors and flatted shanks ensures configuration of the assembled drill with a maximally shortened overhang, so that the modular drills can be used on machines with limited space for tooling (for example on multi-spindle and Swiss-type machines).
  • Do the terms "step drill" and "subland drill" mean the same?
    Not exactly. A step drill is a drill with cutting areas of different diameters to generate a step-diameter hole in one pass. A subland drill is a solid twist step drill, which features different lands for each diameter. However, a step twist drill has the same land along the drill body. Usually, there are two drilling areas in a subland drill. A subland drill is a sub type of step drill.
  • When should a carbide guide pad in a deep drilling tool be reversed or replaced?
    Even though the guide pads do not cut material, they, like carbide cutting inserts or heads, are subject to wear. A damaged or worn out guide pad causes unacceptable roughness and scratching of the machined hole surface.
    The pads should be thoroughly examined visually before applying a drill. If a pad is damaged or the pad working corner wears out approximately 70% of the corner width, the pad should be reversed or replaced.
  • What is a stub drill?
    Commonly called a twist drill with a shortened length of flute to make the drill stronger and more rigid.
    Stub drills are often referred to as extra-short-length drills.
  • What is the main application of ISCAR's flat drills and drilling heads?
    The main application of these tools is their drilling hole with a nearly flat bottom. For example, counterbores for screw heads, spring seats, seal housings, etc.
    The advantage is that no pre-drilling is required when drilling directly into solid materials.
  • ISCAR's product range of tools for machining composite materials includes solid carbide drills with PCD nibs and wafers.
    Can these drills be resharpened?
    Yes, they can. Both drill types have a large area for multiple regrinding and can be reground several times.
  • Which drills are considered as micro drills?
    Even though there is no general definition, drills in a diameter of less than 2-3 mm (0.08-.125") are often referred to as micro drills. Sometimes, such drills are also named "small-size drills".
  • What is a drill mill?
    It is a combined rotating tool that comprises two cutting sections: a drill tool and milling peripheral cutter. The drilling tool is intended to drill a hole. By combining the milling cutter, the hole can be enlarged.
  • Does ISCAR provide flat bottom drills with 3 flutes?
    ISCAR LOGIQ-3-CHAM family comprises 3 flute flat bottom drilling heads which can be mounted on any drill type related to this family, to create a flat bottom hole in solid material without pre-drilling.
  • What is the MODUDRILL?
    ISCAR's MODUDRILL is a modular drilling tool system. A typical MODUDRILL tool is an assembly of tools which comprises a steel body and exchangeable drilling heads mounted on the same body. There are two types of the heads: the first with guide pads carrying indexable carbide inserts, and the second with replaceable CHAM-IQ-DRILL solid carbide heads. In addition, the system contains a steel extension that can be mounted on the body to increase the drilling depth.
  • What is an NC spotting drill?
    An NC spotting drill (also referred to as a NC spot drill) is a precise drill that features a small cutting depth, typically around the height of a drill point. NC spotting drills are intended mainly for pre-drilling an accurate location and to ensure precise and fast subsequent drilling operations without guide bushings, especially on CNC machines. Typically, the NC spotting drills have a 90-degrees point angle.
  • What is peck drilling?
    In peck drilling also referred to as drilling with peck feed or simply "pecking", a drill is repetitively retracted to evacuate chips to dissipate heat.
  • What is a circuit board drill?
    A circuit board drill is a high-precision micro drill that is intended for drilling composite laminates – the main material for producing printed circuit boards, referred to as printed wiring boards (designated as PCB and PWB).
  • What is 'thrust force' in drilling?
    In drilling, the thrust force is an axial force that acts in the feed direction. This force compresses the drill along its axis. The thrust force is the resulting force of axial loads on the chisel edge, the major cutting edges (lips), and the minor cutting edges of a drill, while approximately 50% of the thrust force falls on the chisel edge.
  • What hole accuracy do ISCAR SUMOCHAM assembled drills with exchangeable carbide heads provide?
    ISCAR's SUMOCHAM assembled drills with exchangeable carbide heads provide hole accuracy in the IT10-IT9 ISO tolerance grades under normal cutting conditions.
  • What challenges are encountered when drilling construction beams, and what are the distinctive features of ISCAR's drills with exchangeable heads that are specifically designed for these tasks?
    Steel construction beams play a crucial role in building structures and frameworks, requiring the drilling of numerous holes prior to assembly. However, the clamping mechanisms on machines often lack rigidity, posing a challenge for drilling tools. To address these limitations, it is essential for drilling tools to have an adaptive design that compensates for non-rigid conditions, and optimal drilling performance. ISCAR's solution based on the established concept of assembled tools with an exchangeable drilling head made from tungsten carbide. This solution, which incorporates three key elements: cutting material, cutting geometry and body design, provides an effective tool for drilling relatively thin beam sections under unstable conditions.
  • In twist drills, which flute helix is considered as slow and which as quick?
    In twist drills, the flute helix is often categorized as slow or quick. There is not a strict definition for this characteristic of a drill flute helix, as different tool manufacturers often have their own descriptions. As a general guideline, a helix angle less than 40° is usually associated with a slow flute helix, while a helix angle equal to or above 40° features a quick (or fast or high) helix. Some manufacturers specifically refer to a flute with a helix angle of 20-30° as having a slow helix. Conversely, other manufacturers classify the twist drills they produce into three categories according to the helix angle: slow, normal, and quick helix.
    Reiben
  • Unter welchen Voraussetzungen ist eine Reibbearbeitung erforderlich?
    Wenn die Qualität einer Bohrung verbessert werden muss (präzisere Form- und Lagetoleranzen und hohe Oberflächengüten).
  • Für welchen Tolerenzbereich eignen sich Standard-Reibahlen?
    ISCARs Standard-Reibahlen eignen sich für den Toleranzbereich IT7.
  • Können mit Standard-Reibahlen alle Werkstückstoffe bearbeitet werden?
    Standard-Reibahlen eignen sich für einen Großteil der Werkstückstoffe, in punkto Bearbeitung der Werkstückstoffgruppen ISO N und ISO S sollte jedoch ein ISCAR-Techniker konsultiert werden. 
  • Wie ist die durchschnittiche Standzeit einer Reibahle? 
    Da die Standzeit durch unterschiedliche Faktoren beeinflusst wird (Werkstückstoff, Kühlung, Toleranz, Rundlauffehler usw.), kann keine allgemein gültige Aussage getroffen werden. Jeder Anwendungsfall sollte individuell analysiert werden.
  • Kann man eine Reiboperation ohne Kühlung durchführen?
    Nein. Reiben kann ohne Kühlung nicht durchgeführt werden. Optimalerweise setzt man innere Kühlmittelzufuhr ein. Externe Kühlung ist beim Reiben jedoch auch eine Option.
  • Welches Aufmaß benötigt man vor dem Reiben?
    Das empfohlene Aufmaß hängt vom zu bearbeitenden Wersktückstoff, dem Reibdurchmesser und dem eingesetzten Werkzeug ab. Generell kann dies zwischen 0.15 und 0.4 mm pro Durchmesser betragen.
  • Was ist der höchst zulässige Rundlauffehler beim Reiben?
    Generell ist der höchst zulässige Rundlauffehler beim Reiben max. 0.01 mm. Sollte der Rundlauffehler diesen Wert übersteigen, dann ist eine verstellbare Aufnahme oder eine Optimierung der Spindel empfehlenswert.
  • What is the main advantage an ISCAR's reamer with rolling devices?
    This reamer combines a BAYO-T-REAM high-speed reamer with a rolling device in one single tool. This ensures achieving an accurate hole with exceptional, mirror-like, surface finish.
  • What do letters "BN" and the number after them in designations of BAYO-T-REAM reaming heads mean?
    The letters "BN" in the designations of BAYO-T-REAM reaming heads refer to "bayonet number". The number after "BN" indicates the specific size of the bayonet connection to mount a solid carbide reaming head in a holder, such as BN5, BN6 and so forth.
  • Do BAYO T-REAM reamers with exchangeable multi-flute carbide heads adhere to the "no setup time" principle?
    The answer is yes. According to this principle, there is no need for additional setup operations when replacing a worn head with a new one. This can be done while the reamer is clamped directly in the spindle of a machine tool.
    ISO
  • Wie kann die Produktivität bei der Bearbeitung von Superlegierungen und Nickelbasislegierungen mit ISCARs Keramik-Schneidstoffsorten erhöht werden? 
    ISCAR bietet ein breites Spektrum an Keramik-Schneidstoffsorten, z. B. IW7 für die Bearbeitung von Superlegierungen und Nickelbasislegierungen. <BR/> Im Vergleich zu herkömmlichen Hartmetall-Wendeschneidplatten ermöglichen diese Schneidstoffsorten 10mal schnellere Schnittgeschwindigkeiten von 150 m/min bis zu 450 m/min und dadurch eine sehr viel höhere Produktivität. 
  • Welche Spanformer empfiehlt ISCAR als erste Wahl für die Bearbeitung von Stahl? 
    ISCAR hat 3 neue Spanformertypen im Programm, zum Schlichten, Schruppen und für die mittlere Bearbeitung von Stahl: F3P, M3P und R3P.  <br/> Diese Spanformer in Kombination mit ISCARs SUMO TEC-Schneidstoffsorten ermöglichen Produktivitätssteigerungen, Standzeitverlängerung, bessere Werkstückqualität und eine höhere Prozesssicherheit. Des Weiteren erzeugen sie eine geringere Temperatur, so dass Spanaufschweißungen vermieden werden. Auch der Spanbruch wird verbessert (kleine, kurze Späne).  
  • Wie verbessert man die Spankontrolle bei der Bearbeitung mit CBN-Wendeschneidplatten? 
    CBN-Wendeschneidplatten werden hauptsächlich für die Bearbeitung harter Werkstückstoffe von 55 bis 62 HRC eingesetzt. Herkömmliche CBN-Wendeschneidplatten bieten ein großes Spektrum an aufgelöteten Schneiden, die beim Drehen von hartem Stahl lange, gelockte Späne erzeugen und die Oberflächenqualität des Werkstücks beschädigen.  ISCARs neue CBN-Wendeschneidplatte mit einem geschliffenen Spanformer an der Schneidkante liefert eine hervorragende Spankontrolle bei mittleren Bearbeitungen und beim Schlichten und erzeugt eine hohe Oberflächengüte. 
  • Wie kann man bei der Bearbeitung mit einer Bohrstange mit einer Auskraglänge über 4xD Vibrationen reduzieren? 
    Zur Reduzierung von Vibrationen hat ISCAR eine Anti-Vibrationsbohrstange entwickelt. Der Mechanismus zur Vibrationsdämpfung befindet sich im Inneren der Bohrstange. Dieser reduziert bzw. eliminiert sogar Vibrationen beim Einsatz von Bohrstangen mit großer Auskraglänge. Diese neue Antivibrationslinie ist ISCARs WHISPERLINE. 
  • Wie erreicht man eine Produktivitätssteigerung bei der Bearbeitung von Grauguss mit ISCARs Keramik-Schneidstoffsorten? 
    Grauguss ist in der Automobilindustrie der am meisten bearbeitete Werkstückstoff. Für die Bearbeitung dieses Werkstückstoffs bietet ISCAR ein umfassendes Sortiment an Keramik-Schneidstoffsorten wie z. B. IS6 SiAlON-Schneideinsätze. <br/> Die Schneidstoffsorte IS6 wurde entwickelt, um die Produktivität bei der Bearbeitung von Grauguss zu erhöhen. Der entscheidende Vorteil von IS6 SiAlON Schneidstoffsorten ist, dass im Vergleich zu allen herkömmlichen Hartmetallwendeschneidplatten drei bis viermal höhere Schnittgeschwindigkeiten möglich sind, von 400 m/min bis zu 1200 m/min. Dadurch sind enorme Produktivitätssteigerungen erreichbar. 
  • Welchen Spanformer empfiehlt ISCAR als erste Wahl für die Bearbeitung von rostbeständigem Stahl? 
    ISCAR hat 3 neue Spanformertypen entwickelt: F3M, M3M und R3M zum Schlichten, Schruppen und für mittlere Bearbeitungen von rostbeständigem Stahl. In Kombination mit den SUMOTEC-Schneidstoffsorten erreicht man eine höhere Produktivität, längere Standzeiten und eine höhere Prozesssicherheit.  <br/> Der Spanformer F3M hat positive Spanwinkel für einen weichen Schnitt sowie eine Reduzierung von Schnittkräften und Verschleiß. Dies führt zu erheblich längeren Standzeiten.  <br/> Der Spanformer M3M mit verstärkter Schneidkante und positivem Spanwinkel für die Bearbeitung von rostbeständigem Stahl sorgt für einen weichen Schnitt und reduziert die Schnittkräfte. <br/> Der Spanformer R3M mit verstärkter Schneidkante und positivem Spanwinkel reduziert die Schnittkräfte und wurde zum Schruppen von rostbeständigem Stahl entwickelt. 
  • Wie wirkt sich Hochdruckkühlung aus? 
    Der entscheidende Vorteil von JETCUT Werkzeugen ist die zielgerichtete und somit effiziente Kühlmittelzuführung direkt zu den Schneidkanten. Dies verbessert die Spankontrolle, reduziert die Wärmeentwicklung und verlängert die Standzeit.  <br/> Vor allem bei der Bearbeitung zäher Werkstückstoffe wie Superlegierungen, rostbeständigem Stahl, Titan usw. kommt der Effekt der Hochdruckkühlung deutlich zum Tragen.; 
  • Does ISCAR provide tools for Y-axis turning?
    Yes, ISCAR provides these tools.
  • Can the application of the QUICK-T-LOCK family to Y-axis multi-directional turning potentially lead to spindle damage?
    The principles of Y-axis multi-directional turning (MDT) are applicable to QUICK-T-LOCK solutions. Operating the spindles safely follows the guidelines for any Y-axis MDT operations.
    During the design and testing of QUICK-T-LOCK products at ISCAR's Technical Center, there have been no reported issues of spindle overloading or damage. However, it is recommended to adhere to ISCAR's recommendations for these products to optimize loading conditions.
    For additional safety measures, it is advisable to secure the free end of a machined workpiece with a tailstock if feasible.
    Keramik-Schneidstoffsorten und Schneideinsätze
  • Wie erreicht man eine Produktivitätssteigerung bei der Bearbeitung von Nickelbasislegierungen und weiteren Superlegierungen mit ISCARs Keramik-Schneidstoffsorten?
    ISCAR bietet eine große Auswahl an Keramik-Schneidstoffsorten, z. B. IW7, für die Bearbeitung von Nickelbasislegierungen und sonstigen Superlegierungen. Im Vergleich zu allen herkömmlichen Hartmetall-Wendeschneidplatten ermöglichen ISCARs Keramik-Wendeschneidplatten 10 mal höhere Schnittgeschwindigkeiten von 150 m/min bis zu 450 m/min. Dadurch sind enorme Produktivitätssteigerungen erreichbar. 
  • Welche Spanformer empfiehlt ISCAR für die Bearbeitung von Stahl?
    ISCAR hat zum Schlichten, für mittlere Bearbeitungen und zum Schruppen 3 neue Spanformertypen entwickelt: F3P, M3P und R3P.  In Kombination mit ISCARs SUMO TEC-Schneidstoffsorten erzielt man damit eine höhere Produktivität, längere Standzeiten, bessere Oberflächengüten und höhere Prozesssicherheit. Diese Spanformer erzeugen weniger Wärme, was Spanaufschweißungen verhindert. Es werden kurze, kleine Späne erzeugt, was zu einem höheren Zeitspanvolumen führt.  
  • Wie verbessert man die Spankontrolle mit CBN-Wendeschneidplatten?
    CBN-Wendeschneidplatten wurden hauptsächlich für die Bearbeitung harter Werkstückstoffe von 55 bis zu 62 HRC entwickelt. Herkömmliche CBN-Wendeschneidplatten mit aufgelöteten Schneiden erzeugen lange, gelockte Späne bei Drehoperationen von hartem Stahl und beeinträchtigen die Oberflächengüte des Werkstücks. Die neuen CBN-Wendeschneidplatten von ISCAR verfügen über einen geschliffenen Spanformer, was eine ausgezeichnete Spankontrolle und Oberflächenqualität bei mittleren Bearbeitungen und auch bei Schlichtbearbeitungen ermöglicht. 
  • Wie kann man bei der Bearbeitung mit einer Bohrstange mit einer Auskraglänge über 4xD Vibrationen reduzieren? 
    Zur Reduzierung von Vibrationen hat ISCAR eine Anti-Vibrationsbohrstange entwickelt. Der Mechanismus zur Vibrationsdämpfung befindet sich im Inneren der Bohrstange. Dieser reduziert bzw. eliminiert sogar Vibrationen beim Einsatz von Bohrstangen mit großer Auskraglänge (10xD). Diese neue Antivibrationslinie ist ISCARs WHISPERLINE. 
  • Wie erreicht man eine Produktivitätssteigerung bei der Bearbeitung von Grauguss mit ISCARs Keramik-Schneidstoffsorten? 
    Grauguss ist in der Automobilindustrie der am meisten bearbeitete Werkstückstoff. Für die Bearbeitung dieses Werkstückstoffs bietet ISCAR ein umfassendes Sortiment an Keramik-Schneidstoffsorten wie z. B. IS6 SiAlON. <br/> Die Schneidstoffsorte IS6 wurde entwickelt, um die Produktivität bei der Bearbeitung von Grauguss zu erhöhen. Der entscheidende Vorteil von IS6 SiAlON Schneidstoffsorten ist, dass im Vergleich zu allen herkömmlichen Hartmetallwendeschneidplatten drei bis viermal höhere Schnittgeschwindigkeiten möglich sind, von 400 m/min bis zu 1200 m/min. Dadurch erreicht der Anwender enorme Produktivitätssteigerungen. 
  • Welchen Spanformer empfiehlt ISCAR als erste Wahl für die Bearbeitung von rostbeständigem Stahl? 
    ISCAR hat 3 neue Spanformertypen entwickelt: F3M, M3M und R3M zum Schlichten, Schruppen und für mittlere Bearbeitungen von rostbeständigem Stahl. In Kombination mit den SUMOTEC-Schneidstoffsorten erreicht man eine höhere Produktivität, längere Standzeiten und eine höhere Prozesssicherheit.  <br/> Der Spanformer F3M hat positive Spanwinkel für einen weichen Schnitt und reduziert die Schnittkräfte und den Verschleiß. Dies führt zu erheblich längeren Standzeiten.  <br/> Der Spanformer M3M mit verstärkter Schneidkante und positivem Spanwinkel für die Bearbeitung von rostbeständigem Stahl sorgt für einen weichen Schnitt und reduziert die Schnittkräfte. <br/> Der Spanformer R3M mit verstärkter Schneidkante und positivem Spanwinkel reduziert die Schnittkräfte und wurde zum Schruppen von rostbeständigem Stahl entwickelt. 
  • Wie wirkt sich Hochdruckkühlung aus?
    Der entscheidende Vorteil von JETCUT Werkzeugen ist die zielgerichtete und somit effiziente Kühlmittelzuführung direkt zu den Schneidkanten. Dies verbessert die Spankontrolle, reduziert die Wärmeentwicklung und verlängert die Standzeit.  <br/> Vor allem bei der Bearbeitung zäher Werkstückstoffe wie Superlegierungen, rostbeständigem Stahl, Titan usw. kommt der Effekt der Hochdruckkühlung deutlich zum Tragen; 
    Gewindedrehen
  • Welche Schneidstoffsorte eignet sich am besten für die Bearbeitung von rostbeständigem Stahl? 
    IC1007 
  • Welche Schneidstoffsorte eignet sich am besten für die Bearbeitung von hoch hitzebeständigen Legierungen? 
    IC806 
  • Welche Schneidstoffsorte eignet sich am besten für niedrige Schnittgeschwindigkeiten und labile Maschinenbedingungen?  
    IC228 
  • Wie groß ist die empfohlene Mindestzustellung beim Gewindestrehlen?  
    Größer als die Kantenverrundung. 
  • Warum hat der Spanformer keinen Effekt? 
    Die Schnitttiefe ist zu gering, so dass der Spanformer ineffizient ist 
  • Wie verbessert man die Spankontrolle? 
    Die Spankontrolle kann verbessert werden durch die Auswahl einer geeigneten Zustellmethode (einseitige Zustellung, radiale Zustellung, wechselseitige Zustellung): <ul> <li>Radial infeed</li> <li>Flank infeed</li> <li>Alternating flank infeed</li> </ul> ?????
  • Wie kann die Prozesszeit verkürzt werden? 
    Verwenden Sie mehrschneidige Gewinde-Drehwendeschneidplatten (2M, 3M)<br/> zwei oder drei Schneiden ermöglichen weniger Schnitte und eine kürzere Bearbeitungszeit. Für die meisten Gewindeprofile und Steigungen sind diese Wendeschneidplatten verfügbar und eine gute Wahl für wirtschaftliches Gewindedrehen in der Massenfertigung. 
  • Erklären Sie den Unterschied zwischen einer Teilprofil- und einer Vollprofil-Wendeschneidplatte!  
    Teilprofil:
    • Zur Bearbeitung unterschiedlicher Gewindestandards, geeignet für ein großes Steigungsspektrum mit dem gleichen Winkel(60º oder 55º)
    • Die Wendeschneidplatte verfügt über einen kleinen Eckenradius, welcher auch für die kleinsten Steigungsbereiche geeignet ist
    • Weitere Bearbeitungen zur Fertigung des Außen- und Innendurchmessers sind erforderlich
    • Nicht empfohlen für die Massenfertigung
    • Man benötigt keine unterschiedlichen Wendeschneidplatten
    Vollprofil:
    • Erzeugt das komplette Gewindeprofil
    • Nur ein Eckenradius, welcher
    • ausgelegt ist für die entsprechende Steigung
    • Für die Massenfertigung
    • Nur für ein einziges Profil geeignet
  • Wie wählt man die geeigneten Unterlegplatten aus? 
    Positive Unterlegplatten werden bei RH-Gewinden mit RH-Haltern oder LH-Gewinden mit LH-Haltern eingesetzt. Negative Unterlegplatten werden für die Kombination LH-Gewinde mit RH-Halter oder RH-Gewinde mit LH-Halter. Für EX-RH und IN-LH werden AE-Unterlegplatten verwendet und für IN-RH und EX-LH AL-Unterlegplatten.<br/>
  • Which screw threads are considered as miniature and which as micro?
    Principally, both the definitions of "miniature" and "micro" are not universally standardized, and different industries have their own specific size ranges for miniature and micro screw threads.
    In general, miniature screw threads typically refer to threads with diameters ranging from around 0.3 mm (.012") up to about 2 mm (.08"). These threads are commonly used in applications such as electronics, small appliances, and precision instruments.
    On the other hand, micro screw threads are usually even smaller, with diameters typically 0.3 mm (.012") and below. These extremely small threads are commonly found in microelectronics, medical devices, optical equipment, and other specialized industries where precision and miniaturization are crucial.
    Schneidstoffsorten
  • Was versteht man unter Schneidstoff
    In Zerspanungswerkzeugen besteht der schneidende Teil des Werkzeugs aus dem sogenannten Schneidstoff.
  • Wie klassifiziert ISCAR die Schneidstoffsorten?
    Der international gültige Standard ISO 513 klassifiziert Schneidstoffsorten, basierend auf der Anwendbarkeit ihrer Bestandteile. ISCAR hat diesen Standard übernommen und richtet sich bei der Werkzeugentwicklung nach diesen Vorgaben. Hartmetalle weisen eine äußerst hohe Härte auf und können daher die meisten Werkstückstoffe, die weicher sind, zerspanen. Einige Hartmetallsorten sind jedoch für die Bearbeitung bestimmter Werkstoffklassen besser geeignet als wiederum andere.
  • Was ist ein Hartmetall?
    Hartmetalle sind Schneidstoffe, bestehend aus der Kombination von Hartmetall-Substrat, Beschichtung und spezieller Nachbehandlung. Allerdings ist lediglich das Hartmetall-Substrat zwingend für einen Schneidstoff erforderlich, die anderen Bestandteile sind optional. Das Hartmetall-Substrat besteht aus Karbidpulver(meist Wolframkarbid WC) in Granulatform und einem Bindemetall (meist Kobalt Co). Die meisten für Zerspanungswerkzeuge verwendeten Hartmetalle haben eine verschleißresistente Beschichtung, man spricht dann von beschichteten Hartmetallsorten. Des Weiteren gibt es unterschiedliche, spezielle Nachbehandlungsverfahren, beispielsweise für die Spanfläche einer Wendeschneidplatte. “In punkto Hartmetall” kann sowohl vom Substrat einer beschichteten, als auch einer unbeschichteten Sorte die Rede sein.
  • How does ISCAR classify carbide grades?
    The international standard ISO 513 classifies hard cutting material based on their reasonable applicability with respect to the materials. ISCAR adopted this standard and uses the same approach in tool development. Cemented carbides are very hard materials and therefore they can cut most engineering materials, which are softer. Some carbide grades demonstrate better performance than others in cutting tools applied to machining a specific class of materials.
  •   Was bedeuten die Ziffern und Buchstaben der Anwendungsgruppen gemäß ISO 513?
    Die Buchstaben bestimmen die Werkstoffklasse, welche mit dem Werkzeug einer bestimmten Schneidstoffsorte erfolgreich bearbeitet werden kann. Die Klassifizierungsziffern zeigen das Verhältnis von Härte und Zähigkeit an. Je höher die Zahl desto zäher, je niedriger die Zahl desto härter ist die Schneidstoffsorte.
  • Was ist die SUMO TEC-Technologie?
    SUMO TEC ist ein spezielles, durch ISCAR entwickeltes Nachbehandlungsverfahren. Dieses Verfahren macht die beschichtete Oberfläche glatt und einheitlich, was die innere Spannung und Tröpchenbildung in der Beschichtung reduziert. In CVD-Beschichtungen entsteht aufgrund der unterschiedlichen Wärmedehnungskoeffizienten von Substrat und Beschichtungslagen eine starke innere Zugeigenspannung. Auch PVD-Beschichtungen neigen zur Tröpfchenbildung in der Oberfläche. Diese Faktoren wirken sich negativ auf eine Beschichtung aus und verkürzen daher die Standzeit einer Schneidplatte. Der SUMOTEC-Nachbehandlungsprozess verringert bzw. eliminiert diese unerwünschten Effekte mit dem Ergebnis längerer Standzeiten und höherer Produktivität.
  • Warum sind PVD-Nano-Beschichtungen so effizient und progressiv?
    PVD-Beschichtungen wurden in den späten 1980er Jahren entwickelt. Unter Einsatz moderner Nanotechnologie haben PVD-Beschichtungen mittlerweile einen Quantensprung gemacht - komplexe bis dahin bestehende Probleme in diesem Bereich sind gelöst. Weiterentwicklungen in F&E führten zu einer neuen Klasse verschleißresistenter Nanobeschichtungen. Es handelt sich hierbei um Schichtverbunde mit Schichtdicken bis zu 50 nm. Im Vergleich zu herkömmlichen Beschichtungsverfahren resultiert dies in einer deutlich besseren Verschleißfestigkeit.
  • In der Regel werden ISCARs Schneidstoffsorten mit den Buchstaben “IC”bezeichnet   Warum wird DT7150 (DO-TEC) anders bezeichnet?
    In der Beschichtungstechnologie gibt es zwei grundlegende Verfahren - chemische Gasphasenabscheidung (CVD) und physikalische Gasphasenabscheidung (PVD). Durch die technologische Innovation ist es möglich, beide Verfahren für Wendeschneidplattenbeschichtungen anzuwenden, um die Beschichtungseigenschaften zu beeinflussen. ISCARs Schneidstoffsorte DT7150 ist ein hartes Substrat mit einer MT CVD (Medium Temperature CVD) und TiAlN PVD Beschichtung. Diese Schneidstoffsorte wurde ursprünglich zur produktiven Bearbeitung von Spezial-Hartguss entwickelt.
  • Was bedeutet "Einfahren eines Werkzeugs in einer Radiusbewegung"?
    Bei diesem Verfahren fährt ein Werkzeug in einer Radiusbewegung in das Werkstück ein, wodurch die mechanische und thermische Belastung der Schneidkante allmählich zunimmt. Dieser Ansatz trägt wesentlich zur Bearbeitungsstabilität bei und verbessert die Werkzeugstandzeit. Dieses Verfahren entspricht nicht dem herkömmlichen Einfahren, wobei die Belastung der Schneidkante abrupt ansteigt.
  • What are the fundamental differences between these commonly used definitions: "ultra-fine", "submicron" and "fine" carbide grades?
    Each of these definitions relate to the size of the carbide grains in a carbide grade substrate. Sizes may slightly differ for various standards and norms of carbide product manufacturers, but usually they refer to the following:
    1 - 1.4 μm (40 - 55 μin) grain size         fine grade
    0.7 - 0.9 μm (27.5 - 35 μin) grain size   submicron grade
    0.2 - 0.6 μm (8 - 24 μin) grain size        ultra-fine grade

    In addition, depending on the grain size, there are medium, coarse, extra coarse and even nano carbide grades. The last, for example, features extremely small grain sizes: less than 0.2 μm or 8 μin.
  • Which terms are correct: "cemented carbide", "tungsten carbide", "wolfram carbide" or "hard metal"?
    All four terms refer to cemented tungsten carbide. "Tungsten" is another name for the chemical element Wolfram. (Incidentally, the word origin is Swedish, meaning "heavy stone").
    In the field of cutting tool manufacturing, the terms "cemented carbide", "tungsten carbide" and the abbreviation "HM" (hard metal) are usually used.
  • What are the main properties of ceramics as a cutting tool material?
    When compared with cemented carbides, ceramics possess considerably higher hot hardness and chemical inertness. This means that ceramics ensure much greater cutting speeds and eliminate diffusion wear. Ceramics have lower crack resistance – this feature emphasizes the importance of cutting-edge preparation as a factor of successful machining.
  • What are the main types of ceramics?
    There are two main types of ceramics:
    • Based on aluminum oxide or alumina (Al2O3)
    • Based on silicon nitride (Si3N4)
    Aluminum oxide based ceramics include pure ("oxide" or "white"), mixed ("black"), and reinforced ceramics.
    Silicon nitride based ceramics can be divided into several types, according to content, mechanical properties and production technology. SiAlON ("sialon") ceramics generally fall into this category.
    As cutting materials, ceramics lie between cemented carbides and super hard materials such as polycrystalline diamond (PCD) and cubic boron nitride (CBN), according to their toughness-hardness characteristics.
  • What are the advantages of whisker-reinforced ceramics?
    Whisker-reinforced or "whisker" ceramics are aluminum oxide based ceramics that are reinforced by uniformly dispersed silicon carbide whiskers. Whisker ceramics have higher hardness and strength than unreinforced alumina based ceramics, which improves cutting performance.
  • What is sialon?
    Sialon or, more accurately, SiAlON, is a type of ceramic comprising silicon (Si), aluminum (Al), oxygen (O) and nitrogen (N). SiAlON may be considered as a type of silicon nitride based ceramic but features less toughness and higher oxidation resistance. It is simpler to produce SiAlON than to produce other silicon nitride based ceramics.
  • What is cermet?
    The word "cermet" is made from "ceramic" and "metal". It designates an artificial composite material usually manufactured by powder metallurgy technology. Cermet is a type of cemented carbide where hard particles are represented by titanium-based compounds instead of the tungsten carbides that characterize the cemented carbides commonly used in cutting tools. When compared with tungsten carbides, cermet has higher resistance to abrasive and oxidation wear but its toughness is considerably smaller. In addition, cermet is very sensitive to thermal load.
  • What is the difference between CBN and PCBN?
    Both CBN and PCBN relate to Boron Nitride (BN) - a polymorph material formed by two chemical elements. Boron Nitride exists in different crystal structures. One is cubic and the BN in this structure is Cubic Boron Nitride (CBN).
    As a cutting tool material, CBN is used as a polycrystalline compound, where CBN particles and an added binder are sintered together. The material produced is "Polycrystalline CBN" or simply "PCBN". The percentage of CBN can vary in different PCBN grades. In the context of cutting tools, the commonly used abbreviations "CBN" and "PCBN" may be considered as synonyms.
  • Can the cutting ceramics, CBN and PCD be applied to machining titanium?
    Cutting ceramics and cubic boron nitride (CBN) are not suitable for machining titanium, although polycrystalline diamond (PCD) has proved itself in finish machining titanium in several cases.
  • Does ISO 513 standard relate to cemented carbides only?
    The answer is no. This ISO 513 standard specifies application and specification of hard cutting materials such as cemented carbides, ceramics, diamond, and boron nitride.
  • What is the main application of diamond-like carbon (DLC) coated tools?
    DLC-coated tools are intended mostly for machining aluminum and non-ferrous materials (ISO N group of application).
  • Which cutting materials are referred to as ultra-hard?
    Usually, diamond and cubic boron nitride (CBN) are the two hardest cutting materials considered as ultra-hard.
  • What is the difference between TiAlN and AlTiN coatings?
    The main difference between titanium aluminum nitride (TiAlN) or aluminum titanium nitride (AlTiN) coatings is the content of aluminum which is not above 50% with reference to TiAlN, and more than 50% in AlTiN. The dominating metallic element is written first in the coating formula.
  • What is a superlattice?
    In cutting tool coatings, this is another term for multi-layer nano coating.
  • What is the main function of coatings in cutting tools?
    The main function of cutting tool coatings is to improve the wear strength of a tool, specifically to increase resistance to abrasion, adhesive wear, and to provide thermal protection for prolonged tool life.
  • What is the advantage of natural diamond as a tool material when compared to synthetic polycrystalline diamond (PCD)?
    The monocrystalline structure of natural diamond provides a perfect cutting-edge contour without any junction points. This feature provides a substantial advantage to ensure ultra-high, really "mirror" surface finish required in some applications such as machining crucial parts of optical equipment. In contrast, a PCD cutting edge is formed by various crystals. This produces appropriate junctions on the edge, consequently every junction produces its own trace on a machined surface.
  • Which PCBN grade is considered to possess high CBN content and which has low?
    This subject is not defined, yet depending on CBN percentage the PCBN grades are divided according to:
    - high-CBN-content grades (85% and more),
    - low-CBN-content grades (about 55%).
  • What is MT CVD?
    In cutting tools, MT CVD is a method for coating products made of cutting materials, specifically replaceable inserts from cemented carbides, based on chemical vapor deposition (CVD). Additional letters "MT" are "medium" (sometimes also referred to as "moderate") "temperature" as MT CVD utilizes temperatures around 800°C (1470°F). This is significantly lower when compared to 900-1000°C (1650-1830°F) that feature typical CVD coating process.
  • What is HSS-PM?
    HSS-PM is the abbreviation that relates to high-speed steel (HSS), produced by use of powder metallurgy (PM) technology.
  • What is the purpose of adding various substances to pure tungsten carbide in carbide grades?
    In tungsten carbide grades, cobalt is commonly used as the binder, while other substances are added to enhance the performance capabilities of the grade. For instance, the addition of tantalum carbide (TaC) improves thermal deformation resistance, while the addition of titanium carbide (TiC) helps reduce crater formation.
  • What is hot hardness?
    In the context of cutting tools, hot (or red) hardness refers to the ability of a tool material to retain its high hardness and wear resistance when exposed to high temperatures. As the material's temperature increases, there comes a point where the hardness of the material dramatically decreases. This specific temperature determines the level of hot hardness for a particular tool material.
    Werkstückstoffe
  • Wie klassifiziert ISCAR bei den Schnittwertempfehlungen bei den empfohlenen Schnittparametern?
    ISCAR Werkstoffe entsprechen dem ISO-Standard 513, Zuordnung der Werkstoffe und deren besonders geeignete Schneidstoffe bei geometrisch bestimmter Schneide. Die Bezeichnungen der Hauptgruppen von Werkstoffen, die Haupt- Anwendungen und technische Angaben lehnen sich der VDI 3323 "Anwendungseignung von harten Schneidstoffen" (VDI Verein Deutscher Ingenieure) an.
  • Der ISO-Standard 513 spezifiziert Zerspanungswerkzeuge für die Bearbeitung von rostbeständigem Stahl, da die Werkzeuge zur Gruppe M gehören. Ist das korrekt?
    ISO-Standard 513, Gruppe M (farblich gelb gekennzeichnet) bezieht sich auf Werkzeuge für die Bearbeitung von rostbeständigem, austenitischem und austenitischem-ferritischem Stahl (Duplex). Ferritischer und martenisitischer, rostbeständiger Stahl wird der Gruppe P (farblich blau gekennzeichnet) zugeordnet, und die Startparameter sollten entsprechend programmiert werden.
  • Entspricht die Bearbeitung von Titan der Bearbeitung von austenitischem, rostbeständigem Stahl?
    Handelsübliches Rein-Titan und bei weniger anspruchsvollen Anwendungen können die α- oder α-β- Titanlegierungen ähnlich einem austenitschen, rostbeständigen Stahl bearbeitet werden. Dies gilt nicht für unbehandelte oder vergütete β- Titanlegierungen.
  • Was bedeutet “Beta-Titan”?
    Der Ausdruck “Beta-Titan” wird in der Luft- und Raumfahrtindustrie verwendet. Dieser kann sich auf unterschiedliche Werkstückstoffe beziehen - a β-geglüht α-β-Titanlegierung, oder selten, aβ-Legierung. Deshalb sollte man ihn vor Verwendung exakt spezifizieren, um Missverständnisse zu vermeiden.
  • Warum ist die Zerspanbarkeit von ISO M und S Werkstoffen nahezu gleich?
    Diese Werkstückstoffe sind schwer zerspanbar und weisen hinsichtlich der Zerspanbarkeit die gleichen Eigenschaften auf: geringe Wärmeleitfähigkeit und hohe spezifische Schnittkraft.
  • Gehört Gusseisen zur ISO K-Gruppe?
    Die meisten Gusseisensorten (Grauguss, Kugelgraphitguss, Temperguss) gehören zur Gruppe K. Ausnahmen, bei der Bearbeitung von Hartguss oder Schalenhartguss, bei denen ist die Gruppe H erforderlich. Bainitisches Gusseisen mit Kugelgrahit genannt ADI ( Austempered ductile iron) mit geringer Festigkeit ist die Gruppe P zu wählen. Bainitisches Gusseisen mit Kugelgrahit genannt ADI ( Austempered ductile iron) mit hoher Festigkeit ist die Gruppe H zu wählen.
  • Welcher Stahl ist vorgehärtet und welcher hart?
    Stahlhersteller liefern Stähle in verschiedenen Zuständen: geglüht, vorgehärtet, gehärtet. Der Begriff "vorgehärteter Stahl" bezieht sich auf Stahl, der auf einen nicht allzu hohen Härtegrad gehärtet und vergütet ist - in der Regel unter 45 HRC. "Vorgehärteter" und "gehärteter Stahl" haben beide metallzerspanende Eigenschaften. Abhängig von ihrer Härte kann man Stähle in folgende Gruppen einteilen:
    • Weich (geglüht bis zur Härte HB 250)
    • Vorgehärtet in zwei Härtebereichen:
      - 30-37 HRC
      - 38-44 HRC
    • Gehärtet in drei Härtebereichen:
      - 45-49 HRC
      - 50-55 HRC
      - 56-63 HRC und darüber

    Die Bezeichnung "gehärteter Stahl" bezieht sich in der Regel auf 60 HRC und darüber.
  • What is Ebonite and how to machine this material?
    Ebonite is a hard vulcanized rubber containing a high percentage of sulfur. For the purpose of identifying a suitable tool and appropriate cutting data, Ebonite is characterized by ISCAR material group 30 (ISO N application class). To machine Ebonite effectively, we advise following ISCAR’s recommendations for this group.
  • Are hard metal and heavy metal the same?
    No.
    In metalworking, "hard metal" is a commonly used name for cemented carbide, which is a sintered hard material based on wolfram (tungsten) carbide. Cemented carbide is often referred as simply tungsten carbide. It is the main cutting tool material used today.
    Heavy metals are metals with high atomic weight or density. In the metalworking industry, the term “heavy metal” usually refers to heavy metal alloys, which are sintered composite materials containing 90% or more tungsten.
  • What is the difference between duplex and super duplex stainless steels?
    Duplex stainless steel has a two-phase metallurgical structure: austenitic-ferritic, approximately in equal shares.
    Super duplex stainless steel is a type of duplex stainless steel that contains an increased percentage of chromium and molybdenum for better corrosion resistance.
    From a machinability point of view, these steels are hard-to-cut.
  • Is machining common in manufacturing plastic products? What is the machinability of plastics?
    It is really hard to imagine life today without plastics - organic materials based on synthetic or natural high-molecular compounds (polymers). Plastic products surround us everywhere. Step by step, plastics have replaced traditional materials in many industrial fields, and today plastic is considered one of the most important structural materials. Manufacturing plastic parts is connected mostly with chemical processes; however, for some cases machining is also required. From the point of view of technology, there are three major classes of plastics: thermoplastics, thermosets, and elastomers. According to their use, plastics may be divided into commodity plastics and engineering plastics. Machining is more common for producing parts from engineering plastics, which are represented primarily by thermoplastics. Plastics have very good machinability. In comparison with metals, cutting plastics is performed usually with much higher speeds and feeds, while the applied cutting tools feature significantly less wear. However, selecting appropriate cutting tools is essential to obtain the accuracy required and excellent surface finish.
  • What is Vitallium and how to machine this material?
    Vitallium is a cobalt (Co)-chrome (Cr) alloy that contents approximately 60% of Co, 30% of Cr, 8% of molybdenum and some other elements. Vitallium was developed in the 1930's, and is now used mainly in joint replacement surgery and dental medicine. The alloy is hard-to-machine. Cutting data should be set according to recommendations, related to ISCAR material groups 34 and 35.
  • What is the difference between stainless steel and corrosion resistant steel?
    These definitions are generally used synonymously, along with definitions such as rust-resistant steel, inox steel, and non-corrosive steel.
    In fact, stainless steel may actually be divided into the following types according to their main functional features:
    • Corrosion-resistant steel, resistant to corrosion under normal conditions
    • Oxidation- or rust-resistant steel, resistant to corrosion under high temperatures in aggressive environments
    • Heat-resistant or high-temperature steel that does not change its strength under high temperature stress
    Therefore, corrosion-resistant steel can be considered as a type of stainless steel.
  • What are the main difficulties in machining workpieces from high temperature superalloys with honeycomb structures?
    The main difficulty in machining these workpieces is low workpiece stiffness, caused by the workpiece's thin-wall structure. Due to the honeycomb structure, a workpiece often cannot be clamped properly, which results in a further reduction in the entire technological system's rigidity.
  • What is Nitinol and what is its machineability?
    Nitinol, also referred to as Nickel Titanium or Ni-Ti, is an intermetallic alloy of Nickel and Titanium. Machining of Nitinol causes intensive abrasion and oxidation wear on the cutting tool. In addition, cutting speed substantially affects tool life - if the speed is too slow or too high, tool life drops dramatically. In general, tools intended for the ISO S application group are used for machining Nitinol.
  • Which stainless steel is considered as super austenitic?
    Super austenitic stainless steel is austenitic stainless steel, which features high content of Molybdenum (more than 6%) and increased percentage of Chromium and Nickel. The combination of materials results in high resistance to pitting corrosion. Usually austenitic stainless steel with pitting resistance and an equivalent number (PREN) of more than 40 is super austenitic. Generally, super austenitic stainless steel has less machinability characteristics when compared to austenitic stainless steel.
  • What is "pitting resistance equivalent number"?
    The "Pitting resistance equivalent number" (PREN) is a conditional value that characterizes theoretical resistance of stainless steel to pitting corrosion based on the stainless-steel content. There are several ways to calculate PREN by use of equations.
  • What is "mild steel"?
    "Mild steel" is another name for low carbon steel.
  • What are the main difficulties in machining Hadfield steel?
    Hadfield steel has a high content of Manganese: 12% in average, and therefore often referred to as "manganese steel". It has austenitic structure which ensures high abrasive wear resistance combined with excellent impact toughness and high ductility. When machined, this steel hardens and adversely impacts machinability. Due to the high ductility of austenite and its tendency to work hardening, Hadfield steel is a very difficult-to-cut material.
  • What should be taken into account when machining Beryllium and its alloys?
    In machining Beryllium (Be) and its alloys, the fine Beryllium dust generated while cutting the material can be dangerous to health. It is essential to use machine tools equipped with appropriate chip collecting units.
    Due to Beryllium’s high brittleness, the machined surface may be damaged during machining by microcracks and microflow. To avoid surface damage, the machining process should be under control - rigid workpiece clamping and eliminating vibrations are extremely important.
    Beryllium bronze, which is also known as beryllium copper or BeCu, has good machinability. When machining this alloy, users should follow ISCAR's recommendations regarding the cutting data that relates to copper alloys.
  • What is Zamak and how to machine it?
    Zamak, also referred to as ZAMAK, ZAMAC, or Zamac, is a group of zinc-based alloys. The principal alloying elements are aluminum, magnesium and copper. These alloys feature good machinability and their cutting usually does not cause difficulties. ISCAR's tools for the ISO N group of applications are recommended for machining Zamak.
  • Which cast iron is named "vermicular" and what is its machinability?
    Vermicular cast iron is another name for compacted graphite iron (CGI). The structure of this iron features vermicular (worm-shaped) graphite particles.
    According to its machinability properties, vermicular cast iron or CGI, falls between grey and nodular cast iron.
  • What is "bainitic ductile cast iron"?
    "Bainitic ductile cast iron" (BDCI) is another name for austempered ductile iron (ADI) that is also referred as "ausferritic spheroidal graphite cast iron".
  • What is the machinability of maraging steel?
    Usually maraging steel is machined in annealed conditions without any specific problems. When steel is aged (heat treated), its machining becomes more difficult. A general rule for selecting cutting tools and finding initial cutting data is to use the same recommendations as in the case of high alloy steel of the same hardness.
  • What is "Nichrome" and how is it machined?
    "Nichrome" is the name of a whole group of Nickel-Chromium alloys. It is also referred to as Chrome-Nickel, NiCr, Ni-Cr, etc. The well-recognized Nichrome 80 (Nichrome 80/20) comprises 80% Nickel and 20% Chromium. Other Nichrome grades may contain additional elements such as Iron.
    In machining Nichrome, the initial cutting data can be chosen as it’s recommended for Nickel-based superalloys.
  • Which materials are considered exotic?
    In addition to mainstream engineering materials such as iron-based alloys (steel, stainless steel, cast iron) and common nonferrous metal alloys (aluminum alloys, brass, bronze), there are exotic types of material that were developed to answer specific demands. These exotic materials feature a dedicated application; they are rare and not commonly used and are generally more expensive to fabricate.
    An accurate agreed definition of exotic material does not exist. Many experts refer to them as metals, like Beryllium, Zirconium, etc. and their alloys, ceramics, composites, and superalloys. When considering the use of structural materials, superalloys and composites should be distinguished first. Machining exotic materials can be difficult.
  • What is Stellite, and how to machine it?
    Stellite is a range of hard cobalt-chromium alloys that are used for wear resistance and tool materials.
    Stellite has poor machinability, approximately ten times less when compared with free-cutting steel. Therefore, machining Stellite by cemented carbide tools features very low cutting speeds, yet the speed can be significantly increased by applying cutting tools from whisker reinforced ceramic.
  • How to mill Nylon 6?
    Nylon 6, also referred to as cast nylon or polyamide, is a polymer, thermoplastic resin. Typically, parts from cast nylon are produced by molding (casting), but in some cases, there is a need to machine this type of material. As a general rule, there are no problems in milling cast nylon, although at times difficulties may arise such as overheating, chip evacuation, and deformation of a part after machining due to the elasticity of cast nylon.
    In milling, a typical initial cutting speed is estimated at 400-470 m/min. (1300-1550 sfm) for milling cutters with indexable inserts, and 450-530 m/min. (1480-1750 sfm) for solid carbide endmills and endmills with exchangeable carbide heads. Next, according to the results, the cutting speed can be increased up to 900-1000 m/min (2950-3300 sfm). The greater values may cause overheating, and therefore, are not recommended. Pinpointed air coolant, especially through a cutter body is highly recommended, if not to say necessary.
  • How to machine naval high-tensile steels?
    Naval steels include various high-tensile, high-yield, alloy steels that are used mostly in marine applications, particularly for hulls of vessels and submarines. Typical representatives of these steels are 100 HLES, HY-80, HY-100, and others.
    The general approach to machining high-strength steels is based on recommendations regarding alloy steels with similar strength and hardness characteristics.
  • What is PPSU and how is it machined?
    PPSU is an acronym of polyphenylsulfone - a type of high temperature thermoplastic. Therefore, when machining PPSU, follow ISCAR's recommendations related to cutting thermoplastics.
  • When specifying materials to be machined, ISO standards use the letter “P” for steel, “M” for stainless steel, and “K” for cast iron. These letters are not directly associated with the material. However, when designating non-ferrous metals, superalloys, and hard materials, the ISO standard uses the letters” N”, “S” and “H”, which are appropriate acronyms. Can you explain a reason?
    ISO adopted the material classification principles that were developed in Germany, and therefore, the origin of the identification letters is in German. For example, the letter “P” relates to the German word «Plastisch» (plastic), "K" to «Kurzspanend» (produced short chips), and "H" to "Hart" (hard), just to name a few.
  • Why does ISCAR continue to use outdated designations such as GGG for nodular cast iron when specifying engineering materials in different guides and ITA software?
    The answer is very simple, outdated designations are still common in the industry and used by the manufacturer. Designations that begin with "GG" for gray cast iron, "GGG" for nodular cast iron (according to the old DIN standards), or "En" for steel (according to the old BS standards), have been replaced by other designations in their appropriate standards. However, despite the newer and formal changes, various outdated material designations are the everyday language of the professional world. Therefore, modern designations have been simultaneously preserved with a few outdated designations, which remain popular among manufacturing professionals.
    As a side note, a similar situation may be observed with commercial names. Some materials are well known by their trademark and not by their standard designation.
  • What is considered high-temperature aluminum?
    Generally, high-temperature aluminum is an aluminum alloy with more than 12% silicon content. This aluminum alloy is hypereutectic (also referred as to "hypereutectic aluminum"), while low thermal expansion and low specific gravity makes the alloy a typical material for hypereutectic pistons. From a machinability point of view, the high-temperature aluminum features considerable abrasiveness.
  • What is "pure iron" and how can it be machined?
    Pure iron is the general name of low-carbon non-alloy steel that features an extremely high content of iron (Fe) with an overall trace of other chemical elements of up to 0.1%.
    Pure iron is referred to commercially as ARMCO (American Rolling Mill Corporation). Shop talk language refers pure iron as "Armco-Iron". Also, pure iron is referred to as "soft magnetic iron".
    To machine pure iron, it is recommended to follow ISCAR’s Group 1 (P1) - Material Group Classification guide when selecting the suitable cutting tool and determining the initial cutting data.
  • How to distinguish cold-rolled and hot-rolled steels by their designation?
    Terms "hot rolled" or "cold rolled" relate to steel fabrication methods, and do not specify the composition or the mechanical properties of a steel, which are generally the main parameters for steel designation systems. However, in some cases technical documentation may use these terms or their abbreviations such as HR or CR for highlighting the method of fabrication.
  • High temperature superalloys comprise several types of materials. How can the machinability of these materials vary depending on the material type?
    High temperature superalloys (HTSA) are divided into the three following groups depending on the prevailing element: iron (Fe)-, nickel (Ni)- and cobalt (Co)-based superalloys. Generally, machinability drops in the same order: from Fe- to Co-based HTSA. In addition, material fabrication method (casting, forging, sintering etc.) have impact on machinability within the group, too.
  • From the machinability point of view, are iron-based high temperature superalloys comparable with difficult-to-cut austenitic stainless steels?
    Yes, correct.
  • What is "CPM steel"?
    Acronym "CPM" means Crucible Particle Metallurgy – a powder metallurgy method of steelmaking which was developed by Crucible Industries.
  • How to machine Alumina Ceramics?
    Alumina Ceramic is a general name for a whole group of aluminum-oxide-based ceramic materials that differ in the aluminum oxide (alumina) percentage and their substantial, properties. Due to the high hardness and low thermal conductivity, more common methods to machine Alumina Ceramics are abrasive machining, electro-discharge machining, laser-assistant cutting and others. As for "traditional" cutting, applying carbide tools usually requires the tools to be diamond coated. At the same time, some Alumina Ceramics grades of relatively low hardness (around 85 Shore D) may be machined by commonly coated carbide tools.
  • What is "cupronickel" and its machinability?
    Cupronickel, which is also referred to as "copper nickel", "nickel copper" and "cupro-nickel", is a cooper alloy with Nickel as a main alloying element. Machinability of cupronickel is low when compared to common copper alloys.
  • What is "ultra-high carbon steel"?
    In some steel classification systems high carbon steel that is extremely rich in carbon (usually exceeding 1% but it depends on the system) is named as "ultra-high carbon". The definitions such as "UHC steel" or "very high carbon steel" and abbreviation "UHCS" are common for designating such steels. Ultra-high carbon steel has increased strength yet brittle.
  • Which group of stainless steels precipitation hardened (PH) stainless steel belongs to: martensitic or austenitic?
    Precipitation hardened stainless steel can be both martensitic and austenitic however, the most common of these steel types is martensitic. There is also semi-austenitic precipitation hardened stainless steel, which is austenitic when annealed, and martensitic when hardened.
  • Are austempered ductile iron (ADI) and austenitic nodular cast iron the same material?
    No, these are different types of cast iron.
  • What is K-Alloy?
    K-Alloy is a durable die-casting aluminum alloy that features high resistance to corrosion. K-Alloy also is referred as to A304.
  • What is free-cutting steel?
    Free-cutting (or free-machining) steel is a collective name for carbon steels that feature the increased content of Sulphur when compared to common carbon steels with similar Carbon percentage. This attribute provides better machinability and chip control.
  • What is Tungsten-Copper and how to machine it?
    Tungsten-Copper, which is also referred to as Copper-Tungsten, CuW, and WCu, is a composite material, a pseudo alloy, that contains Copper and Tungsten (Wolfram). Depending on the grade, the content of Copper (Cu) in this material typically varies between 10-50%. When compared to pure Tungsten, machining Copper-Tungsten is easier, and the higher the copper content, the better the machinability. Often the machinability of Copper-Tungsten alloys is like grey cast iron. However, effective machining of CuW grades with high copper percentage requires a more positive cutting geometry.
  • What is the difference between carbon steel and non-alloy steel?
    The definitions "carbon steel", "non-alloy steel", and "unalloyed steel" relate to the classification of steel based on its chemical content. Generally, these definitions are considered synonymous. Steel is an alloy of iron and carbon that can also contain various alloying elements to enhance its properties. Steel is produced by smelting iron ore. During the smelting process, alloying elements can be added to steel, resulting in different grades of alloyed steel depending on the percentage of the added element. In the case of carbon (non-alloy, unalloyed) steel, no alloying element is added during smelting, making it a simple alloy of iron and carbon only. However, since iron ore is not completely pure, small quantities or traces of various elements are present in this alloy. National and international standards define the maximum allowable percentage of these elements to classify a steel grade as carbon steel.
  • What is the difference between brass and bronze?
    Both brass and bronze are copper alloys, but brass is a group of copper-zinc alloys, while bronze is a group of copper-tin alloys.
  • What is electrical steel?
    Electrical steel, also known as silicon steel, transformer steel, or e-steel, is an iron-silicon alloy, distinct from ordinary steel that is an iron-carbon alloy. The silicon content in common cold-rolled electrical steel typically does not exceed 3.2%, while in hot-rolled electrical steel, it can be higher, generally capped at 4.5%. Electric steel is commonly manufactured in the form of thin sheets, coils, and plates, and is often machined in stacks. It is worth noting that this steel is frequently delivered with an isolation layer.
  • What is the difference between "high temperature superalloys (HTSA)" and "heat resistant superalloys (HRSA)"?
    Both definitions - "high temperature superalloys" and "heat resistant superalloys" - relate to alloys specifically intended for use in high temperature environments. Essentially, these terms describe alloys that possess high-temperature properties and can withstand elevated temperatures without significant degradation. Therefore, these terms are often used interchangeably in various contexts, but strictly speaking, there are some differences between the two.
    "High temperature superalloys" (HTSA) generally refer to alloys designed to maintain their strength and mechanical properties at extremely high temperatures, typically above 1000°C (1832°F). These alloys are used in applications such as gas turbines, jet engines, and rocket propulsion systems.
    On the other hand, "heat resistant superalloys" (HRSA) usually relate to alloys that exhibit good resistance to deformation and retain their mechanical properties at elevated temperatures ranging from 650°C (1202°F) to 1000°C (1832°F). These alloys are typically used in applications like heat exchangers, furnaces, and automotive components.
  • What is "Blue Brass"?
    More accurately referred to as "BlueBrass", this is a commercial name for a family of lead-free brass alloys. These alloys typically consist of 56-65% copper (Cu), with the remainder being zinc (Zn), supplemented by traces of other elements.
  • What is "Muntz Metal"?
    Muntz Metal is a brass alloy, consisting of around 60% copper (Cu) and 40% zinc (Zn), with traces of iron (Fe) and other impurities. This alloy is also known as Yellow Metal, 60/40 brass, and is sometimes referred to as "Muntz" in shop talk. The alloy's name originates from George Muntz, the English manufacturer George Muntz who developed this alloy.
    Tool Holding
  • What is a tool holder?
    A tool holder is a device (a tool arrangement) for mounting a cutting tool in a machine tool. One of the tool holder ends carries the cutting tool while the other ends is clamped into the machine tool. Therefore the tool holder acts as an interface between the machine tool and the cutting tool.
  • Are the terms “tool holding” and “tooling” synonymous?
    “Tool holding” is also referred to as “toolholding” and usually relates to tool holding systems that comprise various tool holders, such as arbors, chucks or adaptors, and their accessories (extensions, reducers, rings, sleeves, etc).
    “Tooling” is a much broader definition. “Tooling” can refer to cutting tools together with tool- and work holding arrangements that are intended for a machine tool. “Tooling” relates sometimes to tool management and in certain circumstances it refers to tool holding systems.
  • Does ISCAR supply work holding devices?
    No, ISCAR does not supply work holding devices. ISCAR’s products are cutting tools, tool holding, and tool management systems.
  • Does ISCAR provide tool holders with polygonal taper shank?
    Yes. These tool holders are represented by ISCAR’s CAMFIX family.
  • What are the advantages of thermal (heat) shrink holders?
    The advantages of tool holding, based on clamping tools with cylindrical shanks with the use of heat shrink fitting, are as follows:
    • High accuracy
    • High rigidity
    • Excellent repeatability
    • Reaches deep cavities due to slim holder design
    • Balanced design and assembly’s symmetrical shape eliminate the production of centrifugal forces at high rotational speeds
  • Are ISCAR’s thermal shrink holders suitable for tools with steel shanks?
    Yes. ISCAR’s SRKIN thermal shrink holders are intended for clamping tools with shanks made from cemented carbide, high speed steel (HSS) and steel. The SRKIN product line is fitted DIN69882-8, which is the shrink holder market standard.
    ISCAR also produces SRK slim design shrink holders. SRK holders can be used for steel shanks but we recommend using them for carbide shanks.
  • Does ISCAR produce heating units for mounting cutting tools in thermal shrink holders?
    Yes, ISCAR produces the induction heating unit for thermal shrink tool holding. In addition to this unit, ISCAR provides its simplified, “starter” version, which was designed to help the end-user purchase the shrink holding technology in a low cost device.
  • What are the main design features of X-STREAM SHRINKIN products? In which field would applying these products be the most effective?
    X-STREAM SHRINKIN is a family of thermal shrink chucks with coolant jet channels along the shank bore. The family utilizes a patented design for holding tools with shanks, made from cemented carbide, steel or high-speed steel (HSS). The new chucks combine the advantages of high-precision heat shrink clamping with coolant flow, directed to cutting edges. X-STREAM SHRINKIN has already shown excellent performance in milling aerospace parts, particularly titanium blades and blisks (bladed discs), and especially in high speed milling. In machining deep cavities, the efficient cooling provided by the new chucks substantially improves chip evacuation and diminishes chip re-cutting.
  • What are the SPINJET products and where they are used?
    ISCAR’s SPINJET is a family of coolant-driven compact high speed spindles for small diameter tools. It is a type of “booster” for upgrading existing machines to high speed performers. Depending on pressure and coolant flow rate, the spindles maintain a rotational speed of up to 55000 rpm. The versatile SPINJET products have been successfully integrated in tooling solutions for milling, drilling, thread milling, engraving, chamfering, deburring, and even fine radial grinding. The SPINJET spindles are recommended for tools up to 7 mm (.275 in) in diameter, however the optimal diameter range is 0.5-4 mm (.020-.157 in).
  • Does ISCAR deliver tool holders with identification chips?
    ISCAR’s tool holders with HSK shanks incorporate holes for radio-frequency identification chips (RFID). ISCAR’s CAMFIX tool holders with polygonal taper shank of nominal size C4 (32 as specified by ISO 26623-1) and more are produced with this hole.
    ISCAR can provide RFID chip mounting for all types of tool holder by special request.
    Note: It is essential to adjust the tool holder after mounting an RFID chip.
  • Does ISCAR supply boring heads with digital displays?
    Yes. ISCAR’s ITSBORE family contains adjustable boring heads with digital displays. These heads feature high adjusting accuracy and a simple adjusting process. A clear digital display with a mm/inch value display selection helps to prevent human errors.
  • What is the difference between mandrel and arbor?
    There is no fundamental difference - both terms refer to a bar, usually rotating, that is used for mounting a machined workpiece or a cutting tool.
  • Does ISCAR supply tool holding devices for tapping?
    Yes. Tool holding products for tapping include quick-change ER-type collets, holders with straight shanks and with 7:24 taper shanks, for example:
    • GTI toolholders and straight shanks with floating compression/tension mechanism
    • GTIN compact product line for tappng based on ER collets
    • TCS/TCC quick-change system (part of the ITSBORE modular system)
  • What is "engineered balance"?
    Engineered balance is a general name for design methods to make the mass distribution of a rotary body theoretically symmetrical with the body axis. Using these methods, engineers tried to ensure required balance parameters in the design stage, before production. 3D modelling in a CAD system environment significantly expands the engineered balance possibilities. As the engineered balance relates to virtual objects, it cannot replace a "physical" balancing of real parts. However, an engineered balance design substantially diminishes the mass unbalance of a future product and makes "physical" balancing much easier.
    Engineered balance principles are a necessary feature for a skillful design of rotary tool holders.
    Products with an engineered balance design are sometimes referred to as "balanced by design".
    Shop Talk
    Professional
    slang
  • In der Metallzerspanung gibt es wie in vielen anderen industriellen Bereichen eine eigene Terminologie. Deshalb haben wir einen speziellen Bereich, in dem in der Branche gebräuchliche Begriffe erklärt werden.

    Inconel – Als Inconel wird eine Gruppe von über 20 Metalllegierungen bezeichnet, die durch ein spezielles Verfahren hergestellt werden. Durch eine nachfolgende Nummer (z. B. Inconel 625) wird kenntlich gemacht, dass es sich um einen speziellen Werkstückstoff aus einer Familie hoch hitzebeständiger Legierungen auf Nickel-Chrom-Basis handelt. Ohne eine nachfolgende Nummer bezieht sich Inconel meist auf eine ganze Gruppe von Superlegierungen auf Nickelbasis.
    Nirosta Rostbeständiger Stahl, in der Regel austenitisch

    Beta-Titan (β) – In den meisten Fällen ist dies eine Beta-geglühte Titanlegierung, obwohl es in einigen Fällen auch eine α-β-Titanlegierung bedeutet.

    Whisker - Whiskerverstärkte Keramik
    Counterboring and Countersinking
  • What is a zero flute countersink?
    A zero flute countersink is a countersink with a cross through hole that extends through the side of the countersink cone. The intersection of the cone and the hole provides the cutting edge of the countersink. Also referred to as a "cross-hole countersink".
  • Are the cutting speeds for countersinking and drilling equal?
    In countersinking, the cutting speeds are significantly lower when compared to drilling. There is one rule of thumb that is common for machine shop practice: the cutting speed for countersinking is around a third of the cutting speed, recommended for drilling the same material.
  • What are the requirements to the diameter of the hole being counterbored by a counterbore carrying F3B exchangeable three-flute heads?
    The diameter of the hole should meet the two following conditions: (a) it should be no less than 70% of the nominal diameter of the applied F3B head, and (b) it should be at least 2 mm smaller than the F3B head diameter.
  • What is the difference between counterbores and spotfaces?
    When discussing the shape of a hole, both counterbores and spotfaces (more specifically, a counterbore hole and a spotface hole) are cylindrical holes with a flat bottom. However, these holes are designed to perform different functions and must meet varying dimensional and accuracy requirements. Simply put, the distinction between counterbores and spotfaces can be explained as follows: a spotface is essentially a shallow counterbore.