TECHKNOW

Resize
Dock/Undock
NEW FAQ ADDED
X

INDUSTREALIZE

  • Aerospace
    • Titanium Blisk
    • Inconel Blisk
    • Jet Engine Case
    • Landing Gear - Main Fitting
    • Landing Gear - Torque Link
    • Jet Engine Blade
  • Medicale
    • Dental Screw
    • Hip Joint - Head
    • Hip Joint- Shell
    • Hip Joint- Stem
    • Bone Plate
    • Knee Joint - Tibial
    • Knee Joint - Spacer
    • Knee Joint - Femoral
    • Monoaxial Bone Screw
  • Automotive
    • Connecting Rod
    • Aluminum Wheels
    • Turbo Charger
    • Brake Caliper
    • Crankshaft
    • Cylinder Head
    • Cylinder Block
    • Differential Housing
    • Cylinder Head - Cast Iron
    • Tow bar
    • Brake Caliper Bracket
    • Steering Knuckle
    • Rear Knuckle
    • Electric Car Battery Case
    • Electric Car Motor Housing
  • Cuscinetti
    • Ball Bearing - Outer Ring
    • Ball Bearing - Inner Ring
    • Blade Bearing
  • Ferroviario
    • New Wheel
    • Re-New Wheel
    • Axie Shaft
    • Rail Tracks -Slide Plate
    • Switcher
    • Connecting Link
    • Bogie Frame
    • Connecting link Type 60E1
  • Oil & Gas
    • Rock Bits
    • Pipe and Coupling Sleeves Onshore Parts
    • Pressure Valve
    • Frac Pump
    • Wellheads
  • MTB - Costruttori Macchine Utensili
    • Lathe Machines
    • Multi-Spindle Milling Machine
    • Machine Centers
    • Swiss type / Automatic Machines
    • Multi-Tasking Machines
    • Multi-Spindle Turning Machines
    • Transfer Line Machines
    • Vertical Multi-Tasking Machines
  • Eolico
    • Rotor Blade
    • Blade Adapter
    • Blade Bearing
    • Rotor Hub
    • Bearing Housing
    • Main Shaft
    • Gear Sub Parts
    • Planetary Carrier
    • Support Base
    • Yaw Rings
    • Tower Flange
  • Energia
    • Kaplan Blade
    • Gas & Steam - Turbine Rotor Shaft
  • Industria Pesante
    • Boom
    • H-Links
    • Main Frame
    • Bucket Link
    • Connecting Dipper
    • Loader Frame
  • Stampi
    • Extrusion Die
    • Mold Base
  • General Engineering
    • Blades Method
    • Radial Rotary Method
    • Planetary Movement Method
    • Solid Bar Planetary Movement
    • Slitting Plates
    • Slitting Solid Bar
    • Heavy Duty Face Milling

Contact Us

Groove-Turn & Parting Inserts Wear Problems and Solutions

GROOVE-TURN INSERTS
PARTING OFF
FACE GROOVING


Type of Wear
    • ×
      Flank Wear
      Flank Wear
      Cause
      • High cutting speed
      • Low wear resistance carbide grade

      Remedy
      • Reduce cutting speed
      • Use harder grade
      • Increase coolant pressure
      • Adjust center height position
    • ×
      Crater Wear
      Crater Wear
      Cause
      • Excessive cutting temperatures and pressures on the top of the insert.

      Remedy
      • Reduce cutting speed
      • Reduce feed rate
      • Use harder grade
      • Increase coolant pressure
      • Use an insert with a positive cutting rake
    • ×
      Plastic Deformation
      Plastic Deformation
      Cause
      • Cutting temperature is too high

      Remedy
      • Reduce cutting speed
      • Reduce feed rate
      • Use harder grade
      • Increase coolant pressure
    • ×
      Notch Wear
      Notch Wear
      Cause
      • Cutting speed too high, or insufficient insert wear resistance of the carbide grade

      Remedy
      • Reduce the cutting speed
      • Reduce the feed rate
      • Use harder grade
      • Vary the cutting depth
      • Increase coolant pressure
    • ×
      Thermal Cracking
      Thermal Cracking
      Cause
      • Excessive variations in surface temperature, intermittent machining, or variations in coolant supply

      Remedy
      • Reduce cutting speed
      • Reduce feed rate
      • Use tougher grade
      • Use stronger edge geometry
      • Turn off coolant supply when machining interrupted cuts
    • ×
      Edge Fracture
      Edge Fracture
      Cause
      • Caused by excessive insert wear before indexing the insert
      • The grade and geometry could be too weak for the applications
      • Excessive load on the insert
      • Built-up edge has been formed on the insert

      Remedy
      • Reduce the cutting speed
      • Use tougher grade
      • Reduce the feed rate
      • Use more stable tool holder
      • Use reinforced cutting edge negative cutting rake
      • Use screw clamping instead of self clamping
      • Adjust center height position
      • Reduce tool extension
    • ×
      Built-up Edge
      Built-up Edge
      Cause
      • Cutting zone temperature is too low
      • Negative cutting geometry
      • Machining of very sticky materials such as low-carbon steel, stainless steels, and aluminum

      Remedy
      • Increase the cutting speed
      • Use an indexable insert with a sharper cutting edge
      • Increase the coolant pressure
    • ×
      Flank Wear
      Flank Wear
      Cause
      • High cutting speed
      • Low wear resistance carbide grade

      Remedy
      • Reduce cutting speed
      • Use harder grade
      • Increase coolant pressure
      • Adjust center height position
    • ×
      Crater Wear
      Crater Wear
      Cause
      • Excessive cutting temperatures and pressures on the top of the insert.

      Remedy
      • Use harder grade
      • Reduce cutting speed
      • Increase coolant pressure
      • Use an insert with a positive cutting rake
    • ×
      Plastic Deformation
      Plastic Deformation
      Cause
      • Cutting temperature is too high

      Remedy
      • Use harder grade
      • Reduce feed rate
      • Reduce cutting speed
      • Increase coolant pressure
    • ×
      Notch Wear
      Notch Wear
      Cause
      • Cutting speed too high, or insufficient insert wear resistance of the carbide grade

      Remedy
      • Reduce the cutting speed
      • Use harder grade
      • Use reinforced cutting edge negative cutting rake
      • Adjust center height position
      • Increase the coolant pressure
    • ×
      Thermal Cracking
      Thermal Cracking
      Cause
      • Excessive variations in surface temperature, intermittent machining, or variations in coolant supply

      Remedy
      • Reduce cutting speed
      • Reduce feed rate
      • Use tougher grade
      • Use stronger edge geometry
      • Turn off coolant supply when machining interrupted cuts
    • ×
      Edge Fracture
      Edge Fracture
      Cause
      • Caused by excessive insert wear before indexing the insert
      • The grade and geometry could be too weak for the applications
      • Excessive load on the insert
      • Built-up edge has been formed on the insert

      Remedy
      • Reduce the cutting speed
      • Use tougher grade
      • Reduce feed rate
      • Reduce tool extension
      • Use more stable tool holder
      • Use reinforced cutting edge negative cutting rake
      • Use screw clamping instead of self clamping
      • Check center height position
      • Use screw clamping instead of self- clamping
    • ×
      Built-up Edge
      Built-up Edge
      Cause
      • Cutting zone temperature is too low
      • Negative cutting geometry
      • Machining of very sticky materials such as low-carbon steel, stainless steels, and aluminum

      Remedy
      • Increase the cutting speed
      • Use an insert with a positive cutting rake
      • Increase the coolant pressure
    • ×
      Flank Wear
      Flank Wear
      Cause
      • High cutting speed
      • Low wear resistance carbide grade

      Remedy
      • Reduce cutting speed
      • Use harder grade
      • Increase coolant pressure
      • Adjust center height position
    • ×
      Crater Wear
      Crater Wear
      Cause
      • Excessive cutting temperatures and pressures on the top of the insert.

      Remedy
      • Use harder grade
      • Reduce cutting speed
      • Increase coolant pressure
      • Use an insert with a positive cutting rake
    • ×
      Plastic Deformation
      Plastic Deformation
      Cause
      • Cutting temperature is too high

      Remedy
      • Use harder grade
      • Reduce feed rate
      • Reduce cutting speed
      • Increase coolant pressure
    • ×
      Notch Wear
      Notch Wear
      Cause
      • Cutting speed too high, or insufficient insert wear resistance of the carbide grade

      Remedy
      • Reduce the cutting speed
      • Use harder grade
      • Use reinforced cutting edge negative cutting rake
      • Adjust center height position
      • Increase the coolant pressure
    • ×
      Thermal Cracking
      Thermal Cracking
      Cause
      • Excessive variations in surface temperature, intermittent machining, or variations in coolant supply

      Remedy
      • Reduce cutting speed
      • Reduce feed rate
      • Use tougher grade
      • Use stronger edge geometry
      • Turn off coolant supply when machining interrupted cuts
    • ×
      Edge Fracture
      Edge Fracture
      Cause
      • Caused by excessive insert wear before indexing the insert
      • The grade and geometry could be too weak for the applications
      • Excessive load on the insert
      • Built-up edge has been formed on the insert

      Remedy
      • Reduce cutting speed
      • Use tougher grade
      • Reduce feed rate
      • Reduce tool extension
      • Use more stable tool holder
      • Use reinforced cutting edge negative cutting rake
      • Check center height
      • Use screw clamping instead of self- clamping
    • ×
      Built-up Edge
      Built-up Edge
      Cause
      • Cutting zone temperature is too low
      • Negative cutting geometry
      • Machining of very sticky materials such as low-carbon steel, stainless steels, and aluminum

      Remedy
      • Increase the cutting speed
      • Use an insert with a positive cutting rake
      • Increase the coolant pressure
© ISCAR LTD. Manufacturer of Metalworking Tools (Iscar.com) All Rights Reserved